रसायन विज्ञान 1997

CH(H)

पुणांक : 100

समय : तीन घण्टे

सचनाः

- 1. इस प्रश्नपत्र में 10 प्रश्न हैं। प्रत्येक प्रश्न के उत्तर के बाद 3 सेमी रिक्त स्थान छोड़कर एक क्षेतिज रेखा खींचिए तथा उसके बाद अगले प्रश्न का उत्तर आरम्भ कीजिए।
- समी प्रश्नों के उत्तर दीजिए। 2
- प्रश्न संख्या बायें हाशिये में लिखिए।
- उत्तर केवल उसो भाषा में दीजिए जिसका उल्लेख आपके प्रवेश पत्र में है।
- 5. अपने उत्तरों में केवल अरबी अंकों (Arabic numerals) (0, 1, 2, 9) का प्रयोग कीविए, चाहे उत्तर लिखने के लिए आपकी चयनित भाषा कोई भी हो।
- प्रश्नों / उप-प्रश्नों के अंक दाहिने हाशिए के कोछकों (brackets) में दिये गये है।
- 7. एक प्रश्न के सभी उपप्रश्नों के उत्तर एक जगह दीजिए।
- 8. ऋणात्मक अंक नहीं दिये जायेंगे।
- 9. लघुगणकीय सारणी (Logarithmic Tables) के प्रयोग की अनुमति है।
- 10. परिकलक (Calculator) अथवा स्लाइड रूल का प्रयोग वर्जित है।

उपयोगी आंकड़े

इलेक्ट्रॉनिक आवेश	Θ	=	1-6 × 10 ⁻¹⁹ C
आवोगाद्रो संख्या	NA	= (5-023 × 10 ²³ mol ⁻¹
गैस नियतांक	R	= {	$3.314 \text{ JK}^{-1} \text{ mol}^{-1} = 0.0821 \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$
फैसाडे	F		26500 C mol ⁻¹
इलेक्ट्रॉन का द्रव्यमान	me	= 1	9-1 x 10 ⁻³¹ kg
निर्वात की विद्युत्शीलता	En	=	$3.85 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
प्लांक स्थिरांक	h	= (5.62 × 10 ⁻³⁴ Js
प्रकाश का चेग	C	=	3 × 10 ⁸ ms ⁻¹
परमाणु संहति :	H = 10; H	e = 4·0	; C = 120; O = 160; Na = 230;
			0; Mn = 54.9; Zn = 65.4
परमाणु क्रमांक :	Ti = 22 ;	V = 23	; Cr = 24 ; Cu = 29 ; Zn = 30

- 1. निम्नलिखित उप-प्रश्नों में उत्तर के लिए चार विकल्प दिये गये हैं। सही / श्रेष्ठ उत्तर का चयन कीविए तथा उससे सम्बन्धित वर्ण (d), (b), (c) अथवा (d) को अपनी उत्तर पुस्तिका में उप-प्रश्न $(15 \times 1 = 15)$ के क्रमांक के सम्मुख लिखिए।
 - ()) स्थिर दाब पर बर्फ के साथ साम्यावस्था में स्थित जल की मोलर ऊष्मा-धारिता
 - (d) शुन्य

81

(b) अनंत (∞)

(c) 40-45 KJ K⁻¹ mol⁻¹

```
(d) 75.48 J K<sup>-1</sup> mol<sup>-1</sup>
```

- (II) CO2 की मानक मोलर संभवन (formation) एन्थेल्पी
 - (0) जान्य के बराबर है।
 - (b) गैसीय कार्बन की मानक मोलर दहन-ए-थेल्पी के बराबर है।
 - (c) CO तथा C2 की मानक मोलर संभवन (formation) एन्थेल्पियों के योग के बराबर है।
 - (व) कार्बन (प्रैफाइट) की मानक मोलर दहन-एन्थेल्पी के बराबर है।

CHIH

(a) निम्नलिखित कथनों में कौन-सा कथन सही नहीं है ? (c) AI का प्रथम आयनन विभव Mg के प्रथम आयनन विभव से कम है। (D) Mg का द्वितीय आयनन विभव No के द्वितीय आयनन विभव से अधिक है। (c) No का प्रथम आयनन विभव Mg के प्रथम आयनन विभव से कम है। (d) Mg का तृतीय आयनन विभव Al के तृतीय आयनन विभव से अधिक है। (M) KO2. AND2. BOO2 तथा NO2 में से किसमें अयुग्मित इलेक्ट्रॉन है ? (b) KO2 तथा AJO2 में (a) NO^{*} तथा BaO₂ में (d) केवल BaO, में (c) केवल KO2 में (v) आरोय मृदा धातुओं का कौन-सा गुण उनके परमाणु क्रमांक के साथ बढ़ता है ? (b) उनके हाइड्रॉक्साइडों की घुलनशीलता (a) आयनन ऊर्जा (c) उनके सल्फेटों की घुलनशीलता (d) विद्युत्-ऋणात्मकता (w) बेन्ज़ीन की सांद्र HNO3 तथा सांद्र H2SO4 के मिश्रण के साथ अभिक्रिया करके नाइट्रोवेन्ज्रीन बनाया जा सकता है। नाइट्रोकरण मिश्रण में HNO3 निम्नलिखित के रूप में कार्य करता है :---(c) अपचायक (d) उत्प्रेरक (b) अम्ल (0) क्षार (आ) परमाणु संरचना को व्याख्या के लिए क्वान्टम सिद्धान्त का उपयोग सबसे पहले किसने किया? (d) आइंस्टाइन ने (c) प्लांक ने (a) हाइज़ेनवर्ग ने (b) बोर ने (viii)निम्नलिखित समुहों -OSO2CF3 -OSO,Me -OAC -OMe IV 111 1 11 में निष्कासित होने की क्षमता का क्रम है (b) IV > III > I > II (o) 1 > 11 > 111 > IV (c) III > II > I > IV (d) || > || > || > || > || > ||(x) मेसो-डाइब्रोमोब्यूटेन के विब्रोमीनन (debromination) के दौरान बनने वाला मुख्य यौगिक (a) nन्ब्यूटेन है। (b) 1-व्युटीन है। (c) सिस-2-व्युटीन है। (d) ट्रांस-2-व्युटीन है। (x) निम्नलिखित यौगिकों п 111 IV में खारीयता का क्रम है (d) IV > I > II > II > II (b) ||| > | > | > | > ||(c) || > | > || > IV (d) | > || > || > || > |VCHICHO

2

(xi) 2-मेथिल अपूटेन के मोनोक्लोरीनीकरण से प्राप्त हो सकने वाली संभावित प्रतिविम्बी समावयवी (enantiometic) युगलों की संख्या (d) 13 (c) 4 8 (b) 3書 (0) 28 (xii) ऐरोमैटिक यौगिकों के नाइट्रोकरण के बारे में निम्नलिखित में से कौन-सा कथन असल्य है ? (a) बेन्ज्रीन के नाइट्रोकरण का वेग लगभग हेक्साइयूटरो-बेन्जीन के नाइट्रोकरण के वेग के बराबर है। (b) टॉलुइन के नाइट्रोकरण का वेग बेन्ज़ीन के नाइट्रोकरण के वेग से अधिक है। (c) बेन्ज्रीन के नाइट्रोकरण का वेग हेक्साइयूटरो-बेन्ज्रीन के नाइट्रोकरण के वेग से अधिक है। (d) नाइट्रोकरण एक इलेक्ट्रोफिलिक प्रतिस्थापन अभिक्रिया है। (xiii) पराँक्साइड की उपस्थिति में प्रोपीन में HCI डालने पर कौन-सा मध्यक (intermediate) बनता है ? (b) CH, CHCH, (a) CH3CHCH2CI (d) CH3CH2CH2 (c) CH3CH2CH2 (xiv) निम्नलिखित ऐल्कोहॉलों F CH₃ CH₃ CH₃ OH OH CH OH OH "OH III IV को सांद्र HCI के प्रति अभिक्रियाशीलता (reactivity) का क्रम है (a) 1 > 11 > 111(c) IV > III > II > I (d) IV > III > I > II (xv) निम्न यौगिकों A, B तथा C के लिए सही कथन है соосн₃ соон н он н он COOCH3 н он н он н он соон н он н он (A) (B) COOH (a) A तथा B समरूप (identical) है। (b) A तथा B अप्रतिबिम्बी त्रिविम समावयव (diastereomers) हैं। (c) A तथा C प्रतिबिम्बी समावयव (enantiomers) हैं। (d) A तथा B प्रतिबिम्बी समावयव (enantiomers) है। रिक्त स्थानों की पूर्ति कीजिए। उत्तर-पुस्तिका में केवल अपने उत्तरों को उप-प्रश्नों के कमानुसार रितस्तियः। $(10 \times 1 = 10)$ (a) सोडियम क्लोराइड की संरचना में प्रत्येक No⁺ आयन 6 निकटतम प्रतिवेशी Cl⁻ आयनों से थिरा हे तथा द्वितीय निकटतम Na⁺ आयनों से घिरा है। (b) N_2O_1 , SO_2 , I_3^+ तथा I_3^- में रैखिक स्पीशीज तथा है। CH(H) 3

(c) PCI3. CH3*. NH2 तथा NF3 में से जल के प्रति सबसे कम क्रियाशील है।

- (d) P, अणु में P-P-P कोण डिग्री है।
- (e) आदर्श गैस का परम (absolute) ताप गैस अणुओं की औसत गतिज ऊर्जा के/से
- (f) (CH₃OH₂)*. (CH₃NH₃)* से अम्लीय है।
- (g) Rb(ICl2) गरम करने पर तथा में अपचटित होता है।
- (h) इव अमोनिया में सोडियम का विलयन 33 °C पर विद्युत्-चालक है। शीतल करने पर इस विलयन की विद्युत्-चालकता है।
- (i) गैसीय अभिक्रिया 2 B \rightarrow A के लिए साम्य स्थिरांक K_p, K_c के/से है।
- (/) सोडियम फ्लुओराइड के जलीय विलयन का विद्युत अपघटन (electrolysis) करने से ऐनोड पर गैस निकलती है।
- 3. (a) कठोर जल के एक नमूने (sample) में 96 ppm SO₄²⁻ तथा 183 ppm HCO₃ हैं और उसमें घनायन के रूप में केवल Ca²⁺ ही हैं। ऐसे 1000 kg जल से HCO₃ निकालने के लिए CaO के कितने मोल की आवश्यकता होगी ? यदि इस 1000 kg जल की CaO की ऊपर परिकलित मात्रा से अभिक्रिया की जाये, तो अवशेष Ca²⁺ आयनों की सांद्रता (ppm में) कितनी होगी ? (CaCO₃ को जल में पूर्णतया अविलेय मानिए।) यदि इस अभिकृत (treated) जल के एक लिटर में उपस्थित Ca²⁺ आयनों को हाइड्रोजन आयनों से पूर्ण विनिमय कर दिया जाये, तो इसका pH कितना होगा ?

(एक ppm = जल के दस लाख भाग में किसी पदार्थ का एक भाग, भार/भार)

(b) NIP पर एक लिटर O₂ तथा O₃ के मिश्रण की KI के अम्लीय विलयन के आधिक्य से अभिक्रिया की गई। मुक्त हुए आयोडीन के अनुमापन के लिए 40 ml M/10 सोडियम यायोसल्फेट विलयन की आवश्यकता हुई। इस मिश्रण में ओज़ोन का प्रतिशत भार कितना है ? 300 nm तरंगदैर्घ्य वाला परा-बैंगनी विकिरण ओज़ोन को अपघटित कर सकता है। यह मानकर कि एक फोटॉन एक ओज़ोन अणु को अपघटित करता है, परिकलित करें कि प्रारंभिक मिश्रण में उपस्थित ओज़ोन के पूर्ण अपघटन के लिए कितने फ़ोटॉनों की आवश्यकता होती ?

4. (0) बायु के एक नमूने को, जिसमें N₂ तथा O₂ है, 2500 K तक तब तक गरम किया गया जब तक कि साम्यावस्था

$$N_2(g) + O_2(g) \implies 2 NO(g)$$

जिसका साम्य स्थियांक $K_c = 2.1 \times 10^{10}$ है, स्थापित नहीं हो गई। साम्यावस्था में NO का मोल % 18 था। इस वायु के प्रारंभिक संयोजन का N_2 तथा O_2 के मोलांशों (mole fractions) में आकलन करें।

(b) बास्तविक गैस के लिए अवस्था-समीकरण निम्न प्रकार से लिखा जा सकता है

 $P \overline{V} = RI \left[1 + \frac{B}{V} + \dots \right]$

जिसमें 8 एक स्थियंक है। 8 की वान्डरवाल्स नियतांक a तथा b के पदों में (in terms of) सत्रिकट अभिव्यक्ति (approximate expression) निकालिए।

(c) संख्रेप में कारण बताइए कि ऐल्काइन साधारणतः ऐल्कीन की अपेक्षा H⁺ जैसे इलेक्ट्रोफिलिक अफिकर्मकों के प्रति कम अभिक्रियाशील क्यों होती है।

CH(H)

(5)

(5)

(2)

(2)

(2)

(d) C7H12 सूत्र वाला हाइड्रोकार्बन A ओजोनोलिसिस करने पर यौगिक B देता है जो एल्डॉल संघनन करने पर 1-ऐसीटिलसाइक्लोपेन्टीन देता है। A तथा B की पहचान कीजिए।

(2)

(2)

(3)

(3)

(3)

(3)

(3)

(e) बेज़िल (PhCOCOPh) को LIAIH₄ के साथ पूर्णतः अपचायित करने पर कितने असममित कार्बन परमाणु बनते हैं ? इस उत्पाद में संभावित त्रिविम समावयवियां (storeoisomers) की संख्या कितनी है ?

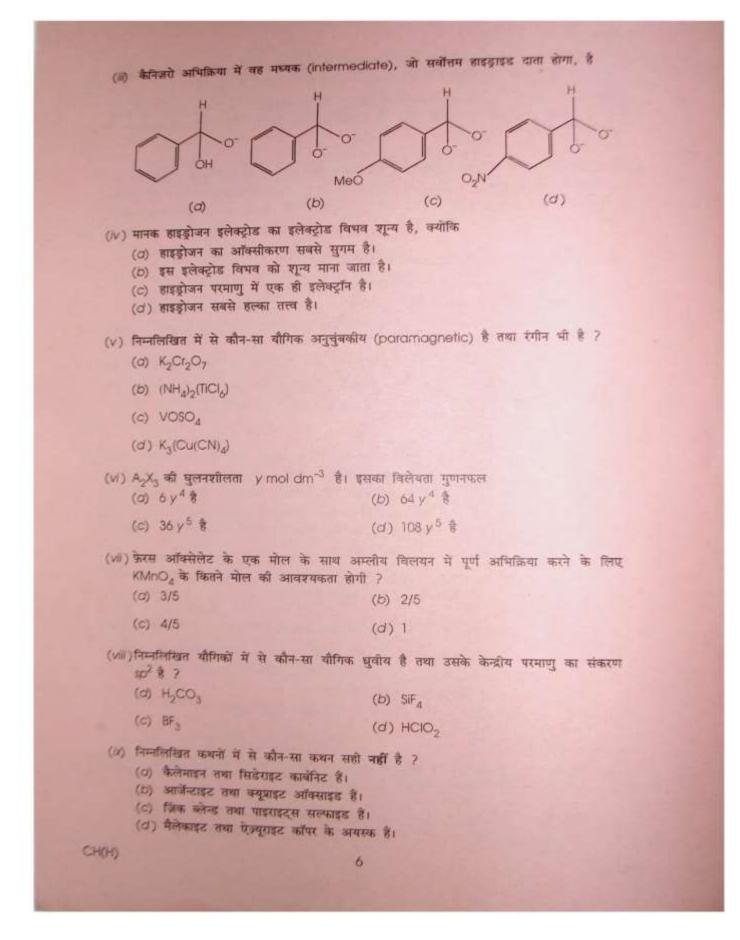
- 5. (a) एक द्रव A की सोडियम कार्बोनेट के गर्म जलीय विलयन के साथ अभिक्रिया करायी जाती है। इस विलयन में दो लवणों B तथा C का मिश्रण बनता है। यह मिश्रण सल्फ्यूरिक अम्ल के साथ अम्लीकरण करने तथा आसवन करने पर फिर से द्रव A देता है। A, B तथा C की पहचान कीजिए तथा सम्बन्धित समीकरणों को लिखिए।
 - (b) निम्नलिखित के लिए संतुलित समीकरण लिखिए :---
 - (/) फ्लुओरऐपेटाइट से ट्रिपल सुपरफॉस्फेट का उत्पादन
 - (//) क्षारीय KMnO4 द्वारा क्यूप्रस ऑक्साइड का क्यूप्रिक हाइड्रॉक्साइड में ऑक्सीकरण
 - (11) क्षारीय परब्रोमेट के साथ ज़िंक की अभिक्रिया से टेट्राहाइड्रॉक्सोज़िकेट ऋणायन का बनना

(c) एक प्रथम कोटि की अभिक्रिया के 298 K पर 10% पूर्ण होने की अवधि 308 K पर उसी अभिक्रिया के 25% पूर्ण होने की अवधि के बराबर है। यदि इस अभिक्रिया का पूर्व चरघातांकी गुणक (pre-exponential factor) 3.56 × 10⁹ s⁻¹ है, तो 318 K पर इसके वेग नियतांक का तथा इसकी सक्रियण ऊर्जा का भी परिकलन कीजिए।

(d) एक अवाष्पशील विलेय (जो वियोजित नहीं होता है) की बहुत थोड़ी मात्रा को बेन्ज़ीन (घनत्व 0.889 g cm⁻³) के 56-8 cm³ में घोला जाता है। सामान्य ताप (room temperature) पर इस विलयन का वाष्प दाब 98-88 mm Hg है जबकि बेन्ज़ीन का वाष्पदाब 100 mm Hg है। इस विलयन की मोललता निकालिए। यदि इस विलयन का हिमकारी ताप (freezing temperature) बेन्ज़ीन से 0.73 डिग्री कम है, तो बेन्ज़ीन के मोलल हिमांक अवनमन स्थिरांक (mole) freezing point depression constant) का मान कितना है ?

(e) एक α-कण को कॉपर परमाणु के नाभिक की ओर किस गति से जाना चाहिए ताकि वह कॉमर परमाणु के नाभिक से 10⁻¹³ मीटर की दुरी तक पहुँच आये ?

- निम्नलिखित में से प्रत्येक उप-प्रश्न में उत्तर के लिए चार विकल्प दिये गये हैं। सही उत्तर का चयन कीजिए।
 (10×1 = 10)
 - (1) यदि फ्लुओग्रइड आयन के pK_b का मान 25°C पर 10.83 है, तो इस ताप पर जल में हाइड्रोफ्लुओरिक अम्ल के आयनन स्थिरांक का मान
 - (a) 1.74×10⁻⁵ होगा (b) 3.52×10⁻³ होगा
 - (c) 6.75×10⁻⁴ होगा (d) 5.38×10⁻² होगा
 - (//) नीचे दिये गये यौगिकों में से कार्बोनिल समूह पर न्यूक्लियोफिलिक आक्रमण (nucleophilic offock) के प्रति सर्वाधिक प्रहणशील (susceptible) यौगिक

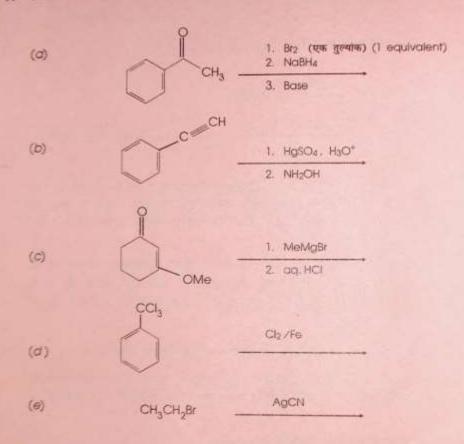

5

(d) MeCOOCOMe \$

(d) MeCOCI * (b) MeCHO *

(c) MeCOOMe #

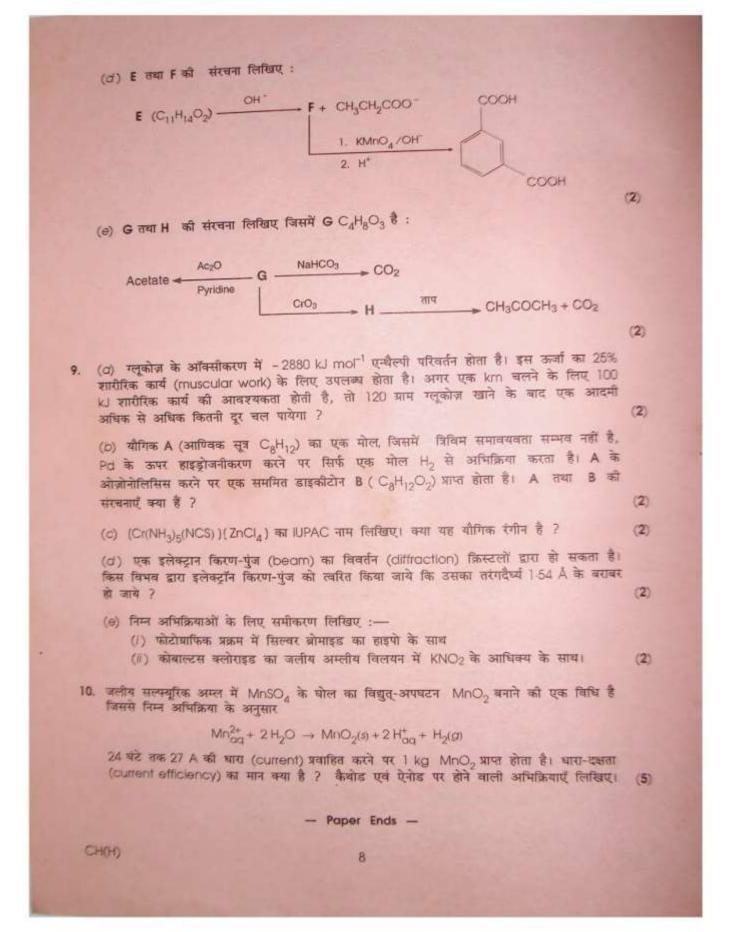
CH(H)



(x) एक हल्के अम्लीय विलयन में केवल धनायन Fe³⁺, Zn²⁺ तथा Cu²⁺ उपस्थित है। वह अभिकर्मक, जो इस विलयन में आधिक्य में डालने पर एक पद (step) में Fe³⁺ को पहचानेगा तथा उसका पृथवकरण करेगा

(0)	2 M HCI 8	(D) O IVI 14F13 6	
		8 (d) H2S गैस है	
(c)	6 M NaOH	(L) 1120 114 0	

7. निम्नलिखित अभिक्रियाओं में से प्रत्येक के मुख्य उत्पाद बतायें :---


 $(5 \times 1 = 5)$

8. (a) निम्नलिखित में से कौन-सा/ से थौगिक I2 / NaOH के साथ पीला अवक्षेप देगा/देगे ? (2)

(1)	ICH2COCH2CH3	(11)	CH3COOCOCH3
(#)	CH3CONH2	(iv)	CH,CH(OH)CH,CH,

(b) सोडियम क्लोगड़ के एक एकक सेल (unit cell) में चार सूत्र-मात्रक (formula units) हैं। एकक सेल के कोर (edge) की लम्बाई 0.564 nm है। सोडियम क्लोगड़ का घनत्व कितना है ? (c) A तथा 8 की संरचना लिखिए : PhC=CH $\xrightarrow{NaNH_2, Mel}$ A $\xrightarrow{Na / NH_3(l)}$ B (2) CH(H) 7

	Registration Number : 368714
	Name :
CI	HH-97
नमवः	: तीन घंटे पूर्णीक : 100
नेर्देश	1. सभी प्रश्नों के उत्तर केवल आपके प्रवेशपत्र (Admit Card) में प्रदर्शित, आपके ढारा चुनी हुई, भाषा में दीजिए।
	2. इस प्रक्रन पत्र में आठ मुद्रित पृष्ठ (10 प्रक्रन) हैं।
	 प्रत्येक प्रक्ष्म के उत्तर के बाद 3 सेमी रिक्त स्थान छोड़कर एक क्षैतिज रेखा खींचिए और उसके बाद ही नये प्रक्ष्म का उत्तर आरम्भ कीजिए।

- 4. प्रत्येक प्रश्न के सभी उप-प्रश्नों के उत्तर एक जगह पर उसी क्रम से दीजिए जिस क्रम में वे प्रश्न में दिए गये हैं।
- 5. ऋणात्मक अंक नहीं दिये जायेंगे।
- 6. परिकलक (Calculator), परिकलन पट्टिका (Slide rule), ग्राफ पेपर, त्रिकोणमितीय (Trigonometric) तथा सांख्यिकीय (Statistical) सारणियों का प्रयोग बर्जित है।
- 7. लघुगणकीय सारणी (Logarithmic Tables) के प्रयोग की अनुमति है।

उपयोगी आंकड़े :				
	आवोगाद्रो संख्या	N_A	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
	फैराडे	F	=	96500 C mol ⁻¹
	गैस नियतांक	R	=	$8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
				Or
		R	=	$0.082 \mathrm{dm^3} \mathrm{atm} \mathrm{K^{-1}} \mathrm{mol^{-1}}$
	परमाणु संहति :			H = 1.0; O = 16.0;
				Cl = 35.5; Cr = 51.99;
				Ag = 107.8
	परमाणु क्रमांक :			Na = 11; Mg = 12;
				V = 23; Cu = 29;
				Ag = 47

 इस प्रक्ष में पंद्रह उप-प्रक्ष हैं। प्रत्येक उप-प्रक्ष में दिये गये चार विकल्पों में से केवल एक ही उचित है। अपने चुने हुये विकल्प को अपनी उत्तर पुस्तिका में केवल A, B, C अथवा D अक्षर लिख कर दशाएँ। उत्तर उसी क्रम में लिखें जिस कम में उप-प्रक्ष दिये गये हैं।

 $(15 \times 1 = 15)$

- (i) एक 'd' इलेक्ट्रान के लिए कक्षक कोणीय संवेग (orbital angular momentum)
 - (A) √6 ħ
 - (B) √2 ħ
 - (C) ħ
 - (D) 2 h

होता है।

- (ii) Cu²⁺/Cu तथा Cu²⁺/Cu⁺ का मानक अपचयन विभव (standard reduction potential) कमश: 0.337 तथा 0.153 V है। अर्ध सेल Cu⁺/Cu के लिए मानक इलेक्ट्रोड विभव (standard electrode potential)
 - (A) 0.184 V
 - (B) 0.827 V
 - (C) 0.521 V
 - (D) 0.490 V

होगा।

- (iii) आदर्श गैस के लिए संपीड्यता-गुणांक (compressibility factor)
 - (A) 1.5
 - (B) 1.0
 - (C) 2.0
 - (D) ∞
 - है।

(iv) निम्नलिखित में से किसमें ध्रुवीय (polar) तथा अध्रुवीय (non-polar) आबन्ध, दोनों हैं?

- (A) NH₄Cl
- (B) HCN
- (C) H₂O₂
- (D) CH₄
- (v) जल का क्रांतिक ताप (critical temperature) O₂ से अधिक है क्योंकि जल के एक अणु में / की / का
 - (A) O2 की तुलना में कम इलेक्ट्रान हैं।
 - (B) दो सहसंयोजक आवन्ध (covalent bond) हैं।
 - (C) आकृति 'V' के आकार की है।
 - (D) डियुव आधूर्ण (Dipole moment) होता है।

CHH-97

(vi) निम्नलिखित में से कौन सी स्पीशीज़ (species) एक आभासी हैलाइड (pseudobalide) नहीं है?

- (A) CNO-
- (B) RCOO-
- (C) OCN-
- (D) NNN⁻
- (vii) अमोनियम डाइक्रोमेट का उपयोग आतिशबाजी में होता है। हवा में हरे रंग का उड़नेवाला वूर्ण
 - (A) CrO₃
 - (B) Cr₂O₃
 - (C) Cr
 - (D) CrO(O₂)
 - き!
- (viii) निम्नलिखित यौगिकों में से किस एक में sp2 संकरण (Hybridization) होता है?
 - (A) CO2
 - (B) SO₂
 - (C) N₂O
 - (D) CO
- (ix) एक मोल सल्फाइट आयन के अम्लीय विलयन से अभिक्रिया करने के लिए KMnO4 के कितने मोल की आवश्यकता होगी?

(A)	$\frac{2}{5}$
(B)	3 5
(C)	$\frac{4}{5}$

- (D) 1
- (x) निम्नलिखित में से किस यौगिक की रंगीन होने की संभावना है?
 - (A) Ag2SO4
 - (B) CuF₂
 - (C) MgF₂
 - (D) CuCl

CHH-97

(xi)	जूटेन-2.3-डाइऑल के कितने प्रकाशीय सकिय त्रिविम समावयवी (optically active
	stereoisomers) संभव है?
	(A) 1
	(B) 2
	(C) 3
6110	(D) 4 जब साइक्लोहेक्सेन को जल पर डालते हैं तो यह तैरता है, क्योंकि
(xii)	(A) साइक्लोहेक्सेन 'नाव' रूप में है।
	(B) साइक्तोहेक्सेन 'कुर्सी' रूप में है।
	(C) माइक्लोहेक्सेन 'किरीट' (crown) रूप में है।
	(D) साइक्लोहेक्सेन जल से कम सघन है।
(xiii)	निम्नलिखित में से कौन सा यौगिक कार्ब-धात्विक (organometallic) है?
	(A) तीषियम मेथाक्साइड
	(B) लीषियम ऐसीटेट
	(C) लीथियम डाइमेथिल ऐमाइड
	(D) मेथिल लीथियम
(xiv)	इंग्लि NH3 में, p-क्लोरोटालूईन की KNH2 से अभिक्रिया का मुख्य उत्पाद
	(A) ०-टॉलीडीन
	(B) m-टॉनीडीन
	(C) p-टनिहीन
	(D) p-क्लोंगो ऐनिलीन
	RI
(xv)	(CH2):CMgCl में D2O की अभिक्रिया करने पर निम्नलिखित में से कौन सा रसायन बनता है?
	(A) (CH ₄) ₃ CD
	(B) (CH ₃) ₃ OD
	(C) (CD ₃) ₃ CD
	(D) (CD ₃) ₃ OD
L fores a	गना की पुर्ति कीजिए (उत्तर पुस्तिका में केवल अपने उत्तरों को कमानुसार लिखिए)।
(a)	$(10 \times 1 = 10)$
	बारेनियस समीकरण, $k = A \exp(-E/RT)$ में, A को पर दर नियतांह (rate constant) कह सकते हैं।
(5)	TA Fo (SIN) AT THE ACT ANT I THEN THE ACT OF
	तव हिंद (डोम) को एक बन्द बर्तन में जलीय हाइड्रोक्लोरिक अम्ल में घोला जाय तब किया गया कार्व है।
CHH-97	

(c) स्थायी रूप से अतिशीतित (supercooled) इय को प्राय: कहते हैं।

(d) एन्थेल्पी (enthalpy) एक _____ गुण हे।

- (e) अभिक्रिया $I^- + I_2 \rightarrow I_3^- \tilde{H}$ लूइस अस्त (Lewis acid) 🕅

- (h) ग्लिसरीन में एक —_____ हाइड्रॉक्सी समूह है।
- (i) 1,3-व्यूटाडाईन की ब्रोमीन के साथ मोलीय अनुपात में अभिक्रिया मुख्य रूप से
 ——— को उत्पन्न करती है।
- (j) वाइनिल क्लोराइड, डाइमेथिल कॉपर के साथ अभिक्रिया करके उत्पन्न करता है।
- (a) AgCl के एक नमूने की अभिक्रिया 1.5 M Na_2CO_3 के 5.00 mL से करके Ag₂CO₃ प्राप्त कर लिया गया। यदि शेष बच्चे हुए विलयन में Cl⁻ की मात्रा 0.0026 ग्राम प्रति लिटर हो तो AgCl के लिए विलेयता गुणनफल का परिकलन कीजिए (K_{sp} Ag₂CO₃ = 8.2 × 10⁻¹²)।

(5)

(b) एक प्रथम कोटि की किसी वियोजन अभिक्रिया के लिए वेग नियतांक का समीकरण

$$\log k (s^{-1}) = 14.34 - \frac{1.25 \times 10^4 \text{ K}}{\text{T}} \stackrel{\text{s}}{=} 1$$

- (i) इस अभिक्रिया के लिए सक्रियण उर्जा (Activation energy) का मान क्या है?
- (ii) किस ताप पर इस अभिक्रिया की अर्ध आयु (half life) 256 मिनट होगी?

(5)

4. (a) निम्न आंकड़ों का उपयोग कर द्रव मेथिल ऐल्कोहॉल की संभवन (formation) उष्मा का परिकलन किलो जूल प्रति मोल में कीजिए।

द्रव मेथिल ऐल्कोहॉल की वाप्पन (vaporization) उप्मा = 38 kJ/mol

तत्वों की मानक अवस्था (standard state) से उनके गैसीय परमाणुओं के बनने की संभवन उप्मा : H, 218 kJ/mol; C, 715 kJ/mol; O, 249 kJ/mol

औसत आबन्ध ऊर्जायें (bond energy)

O-H 463 kJ/mol

CHH-97

3.

5

(5)

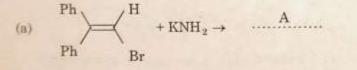
- (b) H2O2 के एक 25 mL बिलयन में पोटेशियम आयोडाइड का अस्तीय बिलयन अधिकता में मिला दिया गया। मुक्त हुई आयोडीन के लिए 0.3 N सोडियम थायोसल्फेट के 20 mL की आवश्यकता हुई। H2O2 बिलयन की आयतन प्रबलता (volume strength) का परिकलन कीजिए। (5)
- (a) निम्न के लिए संतुलित समीकरण लिखिए।

5.

(c)

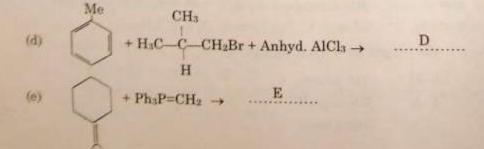
CHH-97

 $(5 \times 1 = 5)$


- (i) फास्कोरस की सान्द्र (concentrated) नाइट्रिक अम्ल से अभिक्रिया
 - (ii) अम्लीय माध्यम में हाइड्रोजन परऑक्साइड का पोटेशियम परमेंगनेट से आक्सीकरण
 - (iii) फ़ास्फोरस से फ़ास्फोरिक अम्ल का औद्योगिक निर्माण
 - (iv) ऐलुमिनियम की जलीय सोडियम हाइड्रॉक्साइड से अभिक्रिया
- (v) ज़िन्क की तनु नाइट्रिक अम्ल से अभिक्रिया।
- (b) निम्नलिखित संकरों (complexes) के सूत्र लिखिए।

 $(2 \times 1 = 2)$

- (i) पेन्टाऐम्मीनक्लोरोकोबाल्ट (III)
- (ii) लीथियम टेट्राहाइड्रोएलुमिनेट (III)
- (c) तत्व A नाइट्रोजन में ज्वलन के उपरान्त एक आयनिक यौगिक B देता है। यौगिक B जल से अभिक्रिया करके C तथा D बनाता है। C का विलयन कार्वन डाइआक्साइड प्रवाहित करने पर 'दूधिया' हो जाता है। A, B, C तथा D का निर्धारण कीजिए। (3)


6. निम्नलिखित अभिक्रियाओं के मुख्य कार्बनिक उत्पादों की संरचनायें (structure) लिखिये।

 $(10 \times 1 = 10)$

(b) Me - - $I+Cu + heat <math>\rightarrow$ B B

$$(COOEt)_2 + EtONa \rightarrow C$$

6

 $(COOH)_2 + (CH_2OH)_2 + Conc. H_2SO_4 \rightarrow F$

(g)
$$R - C = C - R + HClO_4 \rightarrow \dots$$

 $C = R - P_r$
 O
 $[R = n - P_r]$

(f)

(h) H + CHBr₃ + t-BuOK \rightarrow H

- (i) $CICH_2CH_2CH_2COPh + KOH + MeOH \rightarrow \dots$
- (j) $H_3CCOCOC_6H_5 + NaOH/H_3O^{\oplus} \rightarrow \dots$
- 7. (a) आक्सीकरण अवस्था +1 के चांदी (silver) के विलयन में 8 घंटे तक 8.46 एम्पीयर (Amps) की विद्युत धारा प्रवाहित करने पर हुये विद्युत अपघटन (electrolysis) से कितने ग्राम चांदी का परोसनेवाली ट्रे पर लेपन (plated) किया जा सकता है। यदि चांदी की पर्त की मोटाई 0.00254 cm हो तो, ट्रे का क्षेत्रफल क्या है? चांदी का घनत्व 10.5 g/cm³ है। (3)
 - (b) अभिक्रिया Fe²⁺ + Ce⁴⁺ Fe³⁺ + Ce³⁺ के लिए साम्य स्थिरांक (equilibrium constant) का परिकलन कीजिए।

$$(far \in E_{r_0, 4^+(r_0, 3^+)}^{*} = 1.44 \text{ V}; E_{R_0, 3^+(R_0, 2^+)}^{*} = 0.68 \text{ V})$$
 (2)

(3)

- (c) कोमियम घातु काय केन्द्रित घन जालक (body centred cubic lattice) में किस्टलित (crystallize) होती है। एकक सेल (unit cell) की अधि लम्बाई (edge length) 287 pm है। परमाण त्रिज्या का परिकलन कीजिए। क्रोमियम के घनत्व का मान g/cm³ में क्या होगा?
- (d) अम्तीय प्रकार के सूचक (indicator), HIn का रंग इसके संयुग्मी आरक (conjugate base) (In-) से भिन्न है। रंग भिन्नता के लिए मानव नेत्र $[In^{-}]/[HIn]$ अनुपात के केवल 10 से अधिक अथवा 0.1 से कम होने पर ही संवेदनशील है। पूर्ण रंग परिवर्तन के प्रेक्षण के लिए pH में वितना न्युनतम परिवर्तन होना चाहिए (K_n = 1.0×10^{-5})? (2)
- (a) वैनेडियम के एक यौगिक का चुम्बकीय आधूर्ण (magnetic moment) 1.73 BM है। इस यौगिक में वैनेडियम आयन का इलेक्ट्रान विन्यास (configuration) ज्ञात कीजिए। (2)
 - (b) वियाक्त तत्व M के घुलनशील यौगिक को Zn/H₂SO₄ के साथ गर्म करने पर एक रंगहीन अतिवियाक्त (highly poisonous) गैसीय यौगिक N बनता है। यह गैस एक गर्म नली में प्रवाहित करने पर तत्व M का एक रजतीय दर्पण (silvery mirror) देती है। M तथा N का निर्धारण कीजिए।

CHH-97

	(c)	Na* तथा Ag* में से कौन सा शक्तिशाली लुइम अम्ल (Lewis acid) है, और क्यों? (2) आरीय मुदा धानुओं (alkaline earth metals) के क्रिस्टली लवणों में क्रिस्टलन जल आरीय मुदा धानुओं (alkaline earth metals) के लवणों की तुलना में
	(d)	(water of crystallization), siter angen (and in motion) (2)
	(e)	निर्जलीय AICla सहसंयोजक (covalent) है। निम्न आंकड़ों के आधार पर अनुमान लगाइए कि जलीय विलयन में यह सहसंयोजक ही रहेगा अथवा आयनिक रूप में परिवर्तित हो जायेगा।
		Al की आयनन ऊर्जा (ionization energy) = 5137 kJ mol ⁻¹ ; Al ³⁺ के लिए
		$\Delta H_{\text{ansatises}} = -4665 \text{ kJ mol}^{-1}; \text{ Cl}^- \neq \text{ feet} \Delta H_{\text{ansatises}} = -381 \text{ kJ mol}^{-1};$ (ansatises) (3)
9.	(a)	ऐसीटोफ़ीनोन की हाइड्राक्सिलऐमीन-हाइड्रोक्लोराइड से अभिक्रिया दो समावयवी (isomeric) ऑक्सिम (oxime) दे सकती है। आक्सिमों की संरचना (structure) लिखिए। (2)
	(b)	2,2-डाइमेथिल ऑक्सिरेन को अम्ल (H ⁺) द्वारा वियोजित किया जा सकता है। इसकी क्रियाविधि (mechanism) लिखिए। (2)
	(c)	निम्नलिखित में से कौन सी विधि मेथिल-1-व्यूटिल ईथर के संज्लेषण (synthesis) के लिए सही है, और क्यों?
		(i) $(CH_3)_3 CBr + NaO Me \rightarrow$
		(ii) $CH_3Br + NaO - t - Bu \rightarrow$ (2)
	(d)	फीनॉक्साइड आयन के लिए अनुनाद संरचनाओं (resonating structures) की संख्या बेन्नोएट आयन की तुलना में अधिक है परन्तु बेन्जोइक अग्ल फीनॉल की तुलना में एक प्रवल अग्ल है, क्यों?
		(2)
	(e)	प्लेटिनम उत्प्रेरक की उपस्थित में हाइड्रोकार्बन A एक मोल हाइड्रोजन के योग से n -हेक्सेन बनाता है। A का KMnO ₄ से प्रबल आक्सीकरण करने पर एक तीन कार्बन परमाणुवाला कार्बोक्सिलिक अम्ल प्राप्त होता है। A की संरचना दीजिए तथा उपरोक्त अभिक्रियाओं को समझाइए। (2)
10.	(a)	ऐलुमिनियम सल्फाइड नम होने पर दूषित गंध देता है। इस अभिकिया के लिए संतुलित समीकरण
		लिखिए। (2)
	(b)	निम्नलिखित आयनों को त्रिज्याओं (radii) के बढते क्रम में लिखिए :
	(c)	Li ⁺ , Mg^{2+} , K^+ , Al^{3+} (1) निम्नलिखित क्षारीय मृदा धातुओं के सल्फेटों को ऊष्मीय स्थायित्व (thermal stability) के
		वटत कम म लाखए।
		BeSO ₄ , MgSO ₄ , CaSO ₄ , SrSO ₄ (1)
	(d)	14 N की ऐल्फा-कण से नाभिकीय अभिक्रिया के लिए संतुलित समीकरण लिखिए। (1)
		-समाप्त-

CHH-97

(4)	गणित	
(n)	1997	
: तीन घण्टे		पूर्णीकः : 100
: इस प्रश्न पत्र में 17 प्रश्न हैं। एव रेखा खींचकर नये प्रश्न का उत्तर अनिवार्य है।	प्रश्न के उत्तर की समाप्ति पर 3 सेमी जगह छोड़ आरंभ कीजिए। तदनुरूप प्रश्न संख्या को बायें हा	कर एक बैतिज शिये में लिखना
सभी प्रश्नों के उत्तर दीजिए।		
उत्तर केवल उसी भाषा में लिखें जे	आपके प्रवेश-पत्र में दी गई है।	
आपने चाहे किसी भी भाषा का numerals) (0, 1, 2,, 9) का	चुनाव किया हो, अपने उत्तर में केवल अरबी ही प्रयोग कीजिए।	अंको (Arabic
ऋणात्मक अंक नहीं दिये जायेंगे।		
	: इस प्रश्न पत्र में 17 प्रश्न हैं। एक रेखा खींचकर नये प्रश्न का उत्तर अनिवार्य है। सभी प्रश्नों के उत्तर दीजिए। उत्तर केवल उसी भाषा में लिखें जो आपने चाहे किसी भी भाषा का numerals) (0, 1, 2,, 9) का	तीन धण्टे : इस प्रश्न पत्र में 17 प्रश्न हैं। एक प्रश्न के उत्तर की समाप्ति पर 3 सेमी जगह छोड़ रेखा खींचकर नये प्रश्न का उत्तर आरंभ कीजिए। तदनुरूप प्रश्न संख्या को वायें झा अनिवार्य है। सभी प्रश्नों के उत्तर दीजिए। उत्तर केवल उसी भाषा में लिखें जो आपके प्रवेश-पत्र में दी गई है। आपने चाहे किसी भी भाषा का चुनाव किया हो, अपने उत्तर में केवल अरवी numerals) (0, 1, 2,, 9) का ही प्रयोग कीजिए।

- 6. प्रश्नों के अंक दाहिने हाशिये के कोष्ठकों (brackets) में दिये गये हैं।
- 7. हर प्रश्न के उप-प्रश्नों के उत्तर एक ही स्थान पर दीजिए।
- परिकलक (Calculator), परिकलन पट्टिका (Slide rule), आफ पेपर, लघुगणकीय (Logarithmic), त्रिकोणमितीय (Trigonometric) तथा सांख्यिकीय (Statistical) सारणियों का प्रयोग वर्जित है।

1

- इस प्रश्न में पाँच उप-प्रश्न हैं। प्रत्येक उप-प्रश्न में उत्तर के लिए चार विकल्प दिये गये हैं जिनमें से केवल एक ही सही है। केवल अपने चुने हुए विकल्प को ही वर्ण (letter) 0. b. c या d द्वारा, उत्तर-पुस्तिका में क्रमानुसार निरूपित कीजिए।
 - () सारणिक (determinant)

$$\begin{vmatrix} xp+y & x & y \\ yp+z & y & z \\ 0 & xp+y & yp+z \end{vmatrix} = 0,$$

यदि

- (a) x, y, z समान्तर श्रेणी (A.P.) में हों।
 (b) x, y, z गुणोत्तर श्रेणी (G.P.) में हों।
 (c) x, y, z हरात्मक श्रेणी (H.P.) में हों।
 (d) xy, yz, zx समान्तर श्रेणी (A.P.) में हों।

```
(1) समीकरण
```

$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$

- का/के
- (0) कोई भी हल (solution) नहीं है।
- (b) एक इल है।
- (C) दो हल है।
- (d) दो से अधिक हल हैं।
- (iii) माना कि f एक धनात्मक फलन (positive function) है। यदि

$$I_{1} = \int_{1-k}^{k} x f(x(1-x)) dx,$$

$$I_{2} = \int_{1-k}^{k} f(x(1-x)) dx,$$
and $2k-1>0$ दिया है, तब $\frac{I_{1}}{I_{2}}$ का मान
(a) 2
(b) k
(c) $\frac{1}{2}$
(d) 1
होगा।

MACHO

(IV) मान लीजिए कि p. q. r समान लम्बाई के परस्पर लम्ब (mutually perpendicular) सदिश (vectors) हैं। यदि सदिश 📈 समीकरण

$$\vec{p} \times \left((\vec{x} - \vec{q}) \times \vec{p} \right) + \vec{q} \times \left((\vec{x} - \vec{r}) \times \vec{q} \right) + \vec{r} \times \left((\vec{x} - \vec{p}) \times \vec{r} \right) = 0.$$

- को संतुष्ट करता हो, तो 📈 का मान
- (a) $\frac{1}{2}(\vec{p} + \vec{q} 2\vec{r})$ (b) $\frac{1}{2}(\vec{p} + \vec{q} + \vec{r})$ (c) $\frac{1}{3}(\vec{p} + \vec{q} + \vec{r})$ $(d) \frac{1}{3}(2\vec{p} + \vec{q} - \vec{r})$

होगा।

(v) माना कि

 $f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$ जहाँ ρ एक अचर (constant) है। तब $\frac{d^3}{dx^3} f(x)$ का मान x = 0 पर (a) p (b) $p + p^2$ (c) $p + p^3$ (d) p से स्वतन्त्र (independent of p) होगा।

माना कि $ax^2 + 2hxy + by^2 = 1$ एक वक्र का समीकरण है। P एक ऐसा बिन्दु है जो वक्र पर 2. स्थित नहीं है। P से खींची गई एक सरल रेखा वक्र को बिन्दुओं Q और R पर काटती है। यदि गुणनफल PQ. PR रेखा की प्रवणता से स्वतन्त्र है (independent of the slope), तो सिद कीजिए कि दिया गया वक्र एक वृत्त है।

(5)

(5)

3. दिया है कि

$$f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Test) and fan

परीक्षण (

- (a) f(x), x = 0 पर सतत (continuous) है अथवा नहीं।
- (b) f(x), x= 0 पर अवकलनीय (differentiable) है अथवा नहीं।

MA(H)

- 4. प्रवणता 4 (Slope = 4) की एक चर (variable) रेखा अतिपरवलय (hyperbold) xy = 1 को दो बिन्दुओं पर काटती है। उस बिन्दु का बिन्दुपथ ज्ञात कीजिए जो इन बिन्दुओं को जोड़ने वाले रेखा-खंड (line-segment) को 1:2 के अनुपात में विभाजित करता है।
- 5. 2L लम्बाई की एक अर्धवृत्तीय मेहराब (arch) AB तथा एक ऊर्ध्वाधर मीनार PQ एक ही ऊर्ध्वाधर समतल में स्थित हैं। मेहराब के सिरे A और B तथा मीनार का आधार Q एक ही क्षेतिज समतल में हैं एवं बिन्दु B, A एवं Q का मध्यवर्ती है (B is between A and Q)। बिन्दु A पर स्थित एक व्यक्ति मेहराब के कारण मीनार को देख पाने में असमर्थ है। वह मेहराब पर रंगते हुए ऊपर की ओर चढ़ना आरम्म करता है और मेहराब के सहारे ^L/₂ दूरी तय करने के परचाव उसे केवल मीनार का उच्चतम बिन्दु P दिखाई देता है। तत्पण्चात् वह रेंगते हुए मेहराब के उच्चतम बिन्दु पर पहुँचता है और देखता है कि P का उन्नयन कोण (angle of elevation) B है। मीनार की ऊँचाई की गणना L और B के पदों में कीजिए।
- समाकलन करें (Integrate) :--

(a)
$$\int \left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^{\sqrt{2}} \frac{dx}{x}$$

(b)
$$\int_{0}^{\frac{4}{74}} \ln(1 + \tan x) dx$$

- 7. एक प्रतियोगिता में 16 खिलाड़ी S₁, S₂,, S₁₆ भाग लेते हैं। उनको यदृच्छया (at random) 8 जोड़ियों में विभाजित कर दिया जाता है। हर जोड़ी के मध्य एक खेल द्वारा एक विजेता सुनिश्चित किया जाना है। मान लीजिए कि प्रत्येक खिलाड़ी समकुशल (equally strong) है।
 - (a) खिलाड़ी S, के 8 विजेताओं में सम्मिलित होने की प्रायिकता (probability) ज्ञात कोजिए।
 - (b) S1 और S2 में से एक और केवल एक (exactly one) की 8 विजेताओं में सम्मिलित होने की प्रायिकता ज्ञात कीजिए। (5)
- 8. मान लीजिए कि $\overline{b}z + b\overline{z} = c$, $b \neq 0$, सम्मिश्र तल (complex plane) में स्थित एक सरल रेखा (straight line) है, जहाँ \overline{b} , b के सम्मिश्र संयुग्मी (complex conjugate) को दर्शाता है। यदि बिन्दु z_1 , बिन्दु z_2 का सरल रेखा से परावर्तन द्वारा बनाया गया प्रतिबिम्ब हो, तो सिद्ध कीजिए कि

4

$$c = \overline{z_1}b + \overline{z_2}b$$

2

9. सिद्ध कीजिए कि

$$\frac{31}{(n+3)} = \sum_{r=0}^{n} (-1)^r \left(\frac{{}^{n}C_r}{r+3C_r} \right)$$

MACHD

(5)

(5)

(3)

(2)

(5)

(5)

- 10. b के उन सभी घनात्मक मानों (values of b > 0) को ज्ञात करें जो परवलय (parabola) $y = x - bx^2$ और $y = \frac{x^2}{b}$ द्वारा परिसीमित क्षेत्रफल (area of the bounded region enclosed) को अधिकतम बनाते हों। (5)
- इस प्रश्न में पाँच अपूर्ण कथन हैं। इन कथनों को इस प्रकार पूर्ण करें कि वे सत्य हो जायें। उत्तर-पुस्तिका में केवल अपने उत्तरों को कथनों के क्रमानुसार लिखिए। (5×2=10)

(*i*)
$$\lim_{x \to 0} \frac{\int_{0}^{x^{2}} \cos t^{2} dt}{x \sin x} = \dots$$

- (III) वर्षों की एक गोल बूँद के वाष्पित होने की दर (rate of evaporation) किसी भी खण (instant) r पर उसके पृष्ठ के क्षेत्रफल के समानुपाती है। वह अवकलन समीकरण (differential equation), जो बूँद की त्रिज्या-परिवर्तन की दर (rate of change of the radius) को दर्शाता है, इस प्रकार है :---
- (iv) तीन सदिशों (vectors) \vec{a} , \vec{b} और \vec{c} की लम्बाई (magnitude) क्रमश: 1, 1 और 2 है। यदि $\vec{a'} \times (\vec{a'} \times \vec{c'}) + \vec{b'} = \vec{0'}$ हो, तो $\vec{a'}$ और $\vec{c'}$ के बीच का न्यूनकोण (acute angle) होगा।
- 12. माना कि O(0, 0), A(2, 0) तथा $B(1, \frac{1}{\sqrt{3}})$ एक त्रिभुज के शीर्ष (vertices) हैं। क्षेत्र $R \triangle OAB$ के अन्दर स्थित उन बिन्दुओं P द्वारा बना है, जो

 $d(P, OA) \leq \min \{d(P, OB), d(P, AB)\}$

को संतुष्ट करते हैं। यहाँ ८ किसी भी बिन्दु से संगत रेखा की दूरी को दर्शाता है। क्षेत्र R का रेखाचिए और उसका क्षेत्रफल भी निकालिए।

(5)

MACHD

- 13. इस प्रश्न में पाँच अपूर्ण कथन हैं। प्रत्येक कथन को उचित वास्तविक संख्याओं (real numbers) द्वारा इस प्रकार पूर्ण करें कि वह कथन सत्य हो जाये। अपनी उत्तर-पुस्तिका में केवल (5×2=10) इन संख्याओं को कथनों के क्रमानुसार लिखिए।
 - (i) माना कि प्रत्येक वास्तविक संख्या x के लिए F(x) = f(x) g(x) h(x), जहाँ f(x), g(x) तथा h(x) अवकलनीय (differentiable) फलन है। यदि किसी बिन्दु x_0 पर $F'(x_0) = 21 F(x_0)$, $f'(x_0) = 4 f(x_0)$, $g'(x_0) = -7 g(x_0)$ तथा $h'(x_0) = k h(x_0)$ हो, तो $k = \dots$ है।
 - $\lim_{h \to 0} \frac{\ln(1+2h) 2\ln(1+h)}{h^2} = \dots$
 - (III) यदि cos (x y), cos x तथा cos (x + y) हरात्मक श्रेणी (Harmonic Progression) में हों, तो cos x sec $\left(\frac{y}{2}\right)$ = है।
 - (IV) यदि दो धनात्मक (positive) संख्याओं के मध्य x एक समान्तर माध्य (Arithmetic Mean) है तथा y, z दो गुणोत्तर माध्य (Geometric Means) हैं, तब <u>y³ + z³</u> <u>xyz</u> =
 - (v) एक दीर्घवृत्त (ellipse) में OB एक लघु अर्धाक्ष (semi minor axis) है तथा F और F उसके फोकस बिन्दु हैं। यदि FBF एक समकोण है, तो दीर्घवृत्त की उत्केन्द्रता (eccentricity) होगी।
- 14. यदि A B. C तीन कोण इस प्रकार है कि $A = \frac{\pi}{4}$ तथा tan B tan C = p, तब p के उन सभी मानों को ज्ञात करें जो A, B, C को एक त्रिमुज के शीर्षकोण बना देते हों।

(5)

(5)

15. A एवं 8 अलग-अलग दो जलाशाय (reservoirs) हैं। जलाशाय A की धारिता (capacity) 8 की धारिता की दोगुनी है। दोनों जलाशायों को पूर्णतया जल से भरने के पश्चात् उनके अंतर्गम (inlets) बंद कर दिये जाते हैं। अब दोनों जलाशायों से जल एकसाथ छोड़ा जाता है। प्रत्येक जलाशाय से जल-निकासी की दर, किसी भी क्षण, उस जलाशाय में तत्क्षण निहित जल की मात्रा के समानुचाती है। एक घंटे तक पानी छोड़ने के बाद जलाशाय A में जल की मात्रा जलाशाय 8 में बल की मात्रा जलाशाय 8 में जल की मात्रा जलाशाय 8 में बल की मात्रा की 1½ गुनी है। कितने घंटे पश्चात् दोनों जलाशायों में जल की मात्रा समान होगी ?

MA(H)

16. माना कि α, B, c असमतलीय (noncoplanar) एकक सदिश (unit vectors) हैं जो परस्पर एकसमान कोण θ पर नत (inclined) हैं। यदि

 $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$

हो, तो अदिश (scalars) p, q, r को 0 के पदों में ज्ञात कीजिए।

17. (a) समीकरण

$$2^{|y|} - |2^{|y|} - 1| = 2^{|y|} + 1$$

के समस्त हलों के समुच्चय (set of all solutions) को ज्ञात कीजिए।

(b) सारणिक (determinant)

1	bc	ca	ab
	р	9	r
	1	1	1

का मान ज्ञात कीजिए, जहाँ a, b तथा c किसी हरात्मक श्रेणी (Harmonic Progression) के क्रमश: p वें , q वें तथा r वें पद (terms) हैं। (2)

(5)

(3)

- Paper Ends -

MA(H)

- 2. इस प्रश्न पत्र में सात मुद्रित पृष्ठ (17 प्रश्न) हैं।
- प्रत्येक प्रश्न के उत्तर के बाद 3 सेमी रिक्त स्थान छोड़कर एक क्षैतिज रेखा खींचिए और उसके बाद ही नये प्रश्न का उत्तर आरम्भ कीजिए।
- प्रत्येक प्रक्रन के सभी उप-प्रक्रनों के उत्तर एक जगह पर उसी क्रम से बीजिए जिस कम में वे प्रक्रन में दिए गये हैं।
- 5. ऋणात्मक अंक नहीं दिये जायेंगे।
- परिकलक (Calculator), परिकलन पट्टिका (Slide rule), ग्राफ पेपर, लघु गणकीय (Logarithmic), त्रिकोणमितीय (Trigonometric) तथा सांख्यिकीय (Statistical) सारणियों का प्रयोग वर्जित है।

1.

इस प्रश्न में पाँच उप-प्रश्न हैं। प्रत्येक उप-प्रश्न में दिये गये चार विकल्पों में से केवल एक ही उवित है। अपने चुने हुये विकल्प को अपनी उत्तर पुस्तिका में केवल A, B, C अथवा D अक्षर लिख कर दर्जाएँ। उत्तर उसी कम में लिखें जिस क्रम में उप-प्रश्न दिये गये हैं।

$$(5 \times 2 = 10)$$

(i) यदि
$$g(x) = \int_{0}^{x} \cos^4 t dt$$
, तो $g(x + \pi)$ किसके बरावर है?

(A) $g(x) + g(\pi)$

(B) $g(x) - g(\pi)$

(C) $g(x)g(\pi)$

(D)
$$\frac{g(x)}{g(\pi)}$$

(ii) यदि $f(x) = \frac{x}{\sin x}$ तथा $g(x) = \frac{x}{\tan x}$, जहाँ $0 < x \le 1$ है, तो इस अन्तराल में

(A) f(x) तथा g(x) दोनों ही वर्द्धमान फलन (increasing functions) ह

(B) f(x) तथा g(x) दोनों ही हासमान फलन (decreasing functions) ह

(C) f(x) वर्द्धमान फलन है

(D) g(x) वर्द्धमान फलन है।

(iii) प्राचल (parameter), जिस पर सारणिक (determinant)

$$\frac{1}{\cos(p-d)x} \frac{a}{\cos px} \frac{a^2}{\cos(p+d)x}$$
$$\frac{\sin(p-d)x}{\sin px} \frac{\sin(p+d)x}{\sin(p+d)x}$$

का मान निर्भर नहीं करता, वह है

(A) a
(B) p
(C) d

(D) x.

MAH-97

- (iv) फलन $\cos x \cos (x+2) \cos^2 (x+1)$ का लेखाचित्र (graph)
 - (A) एक सरल रेखा है जो (0, sin² 1) से गुजरती है और जिसकी प्रवणता 2 है
 - (B) एक सरल रेखा है जो (0, 0) से गुजरती है
 - (C) एक परवलय (parabola) हे जिसका शीर्ष (1, sin² 1) ह
 - (D) एक सरल रेखा है जो $\left(\frac{\pi}{2}, -\sin^2 1\right)$ से गुजरती है तथा जो x अक्ष के समांतर है।

(v)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}}$$
 and Him and \mathbb{R} ?

- (A) $1 + \sqrt{5}$
- (B) $-1 + \sqrt{5}$
- (C) $-1 + \sqrt{2}$
- (D) $1 + \sqrt{2}$.
- 2. दीर्षवृत (ellipse) $x^2 + 4y^2 = 4$ की कोई स्पर्श रेखा (tangent) दीर्षवृत $x^2 + 2y^2 = 6$ को Pऔर Q पर मिलती है। सिद्ध करो कि P और Q पर दीर्षवृत $x^2 + 2y^2 = 6$ की स्पर्श रेखायें लम्बवत् (perpendicular) होंगी।

3. सिद्ध करों कि किसी भी वास्तविक x के लिये फलन (function) $\frac{\sin x \cos 3x}{\sin 3x \cos x}$ का मान $\frac{1}{3}$ और 3 के वीच में नहीं है।

(5)

$$\int_{-\infty}^{\infty} \frac{2x (1+\sin x)}{1+\cos^2 x} dx$$
 का मान ज्ञात करें।

MAH-97

5. मान लो कि a+b=4, जहाँ पर a<2 है, तथा g(x) एक अवकलनीय फलन (differentiable function) है। यदि सभी x के लिये $\frac{dg}{dx} > 0$ हो, तो सिद्ध करो कि (b-a) के बढ़ने के साथ साथ $\int_{0}^{a} g(x)dx + \int_{0}^{b} g(x)dx$ भी बढ़ता है।

(5)

- 6. इस प्रग्न में पाँच उप-प्रग्न हैं। प्रत्येक उप-प्रग्न में अधूरे कथन को रिक्त स्थानों द्वारा दर्णाया गया है। प्रत्येक रिक्त स्थान के लिये ऐसा उत्तर निश्चित करें ताकि कथन सत्य हो जाये। उत्तर पुस्तिका में केवल कथन को पूर्ण करने वाला उत्तर ही लिखें। उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिये गये हैं।
 - $(5 \times 2 = 10)$

(i) समीकरण
$$|x-2|^2 + |x-2| - 2 = 0$$
 के सभी वास्तविक मूलों का योग \vec{E}

- (ii) मान लो कि p तथा q समीकरण $x^2 2x + A = 0$ के मूल हैं, एवं r तथा s समीकरण $x^2 18x + B = 0$ के मूल हैं। यदि p < q < r < s समान्तर श्रेणी (Arithmatic progression) में हैं तो $A = \dots$ तथा $B = \dots$ 1
- (iii) मान लो कि $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10 \ \overrightarrow{a} + 2 \ \overrightarrow{b}$ तथा $\overrightarrow{OC} = \overrightarrow{b}$, जहाँ O, A तथा C अमेरेख (non-collinear) बिन्दु हैं। यह भी मान लो कि चर्तुभुज (quadrilateral) OABC का क्षेत्रफल p है तथा उस समान्तर चर्तुभुज (parallelogram), जिसकी OA तथा OC मंलम्न (adjacent) भुजायें हैं, का क्षेत्रफल q है। यदि p = kq तो $k = \dots$ |
- (iv) $(\sqrt{2}+3^{1/5})^{10}$ के प्रसार (expansion) में परिमेय पदों (rational terms) का योग है।
- (♥) मान लो कि सभी पूर्णांको $k \ge 1$ के लिये C_k एक k सेंटीमीटर त्रिज्या (radius) का तृत है जिसका केन्द्र मूल विन्दु (origin) है। एक कण (particle) तृत C_k पर वामावर्त दिशा (counter clockwise direction) में k सेंटीमीटर की दूरी पूरी करने के पश्चात त्रिज्यीय दिशा (radial direction) में चल कर तृत C_{k+1} पर पहुँचता है। कण इसी प्रकार गतिमान रहता है। कण विन्दु (1, 0) से चलना प्रारम्भ करता है। यदि कण x-अक्ष की धनात्मक दिशा को प्रथम वार तृत C_n पर पार करता है तो $n = \dots 1$

MAH-97.

7.

मान लो कि $0 < A_i < \pi$, जहाँ $i = 1, 2, \dots, n$ है। गणितीय आगमन (mathematical induction) द्वारा सिद्ध करो कि सभी पूर्णांकों $n \ge 1$ के लिये

$$\sin A_1 + \sin A_2 + \dots + \sin A_n \le n \sin \left(\frac{A_1 + A_2 + \dots + A_n}{n} \right).$$

(आप इस तथ्य का उपयोग कर सकते हैं कि $p \sin x + (1 - p) \sin y \le \sin[px + (1 - p)y]$, जहाँ $0 \le p \le 1$ तथा $0 \le x, y \le \pi$ हैं।)

(5) 8. x के वह मान निकालो जिनके लिख्ने निम्नलिखित फलन सतत (continuous) या अवकलनीय (differentiable) नहीं है :

$$f(x) = \begin{cases} 1-x, & x < 1\\ (1-x)(2-x), & 1 \le x \le 2\\ 3-x, & x > 2. \end{cases}$$

अपने उत्तर का पुष्टिकरण दें।

9. यदि \vec{A} , \vec{B} तथा \vec{C} सदिश (vector) राशियाँ हैं, जहाँ $|\vec{B}| = |\vec{C}|$, तो सिद्ध करो कि

$$\left[(\overrightarrow{A} + \overrightarrow{B}) \times (\overrightarrow{A} + \overrightarrow{C}) \right] \times (\overrightarrow{B} \times \overrightarrow{C}) \cdot (\overrightarrow{B} + \overrightarrow{C}) = 0.$$

10. मान लो कि z_1 तथा z_2 समीकरण $z^2 + pz + q = 0$ के मूल (roots) हैं, जहाँ गुणांक p तथा qसम्मिश्च संख्यायें (complex numbers) हो सकती हैं। यह भी मान लो कि A तथा B सम्मिश्च समतल (complex plane) में z_1 तथा z_2 को निरूपित (represent) करते हैं। यदि $\angle AOB = \alpha \neq 0$ तथा OA = OB, जहाँ O मूलबिन्दु (origin) है, तो सिद्ध करो कि $p^2 = 4q \cos^2\left(\frac{\alpha}{2}\right)$.

11. इस प्रकृत में पाँच उप-प्रकृत हैं। प्रत्येक उप-प्रकृत में अधूरे कथन को रिक्त स्थानों द्वारा दर्शाया गया है। प्रत्येक रिक्त स्थान के लिये ऐसा उत्तर निक्त्वित करें ताकि कथन सत्य हो जाये। उत्तर पुस्तिका में केवल कथन को पूर्ण करने वाला उत्तर ही लिखें। उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिये गये हैं।

$(5 \times 2 = 10)$

(i) मान लो कि f(x) एक सतत फलन (continuous function) है जो अंतराल $1 \le x \le 3$ पर परिभाषित (defined) है। यदि f(x) का मान प्रत्येक x के लिये परिमेय (rational) है तथा f(2) = 10 है, तो $f(15) = \dots$ होगा।

MAH-97

(5)

(5)

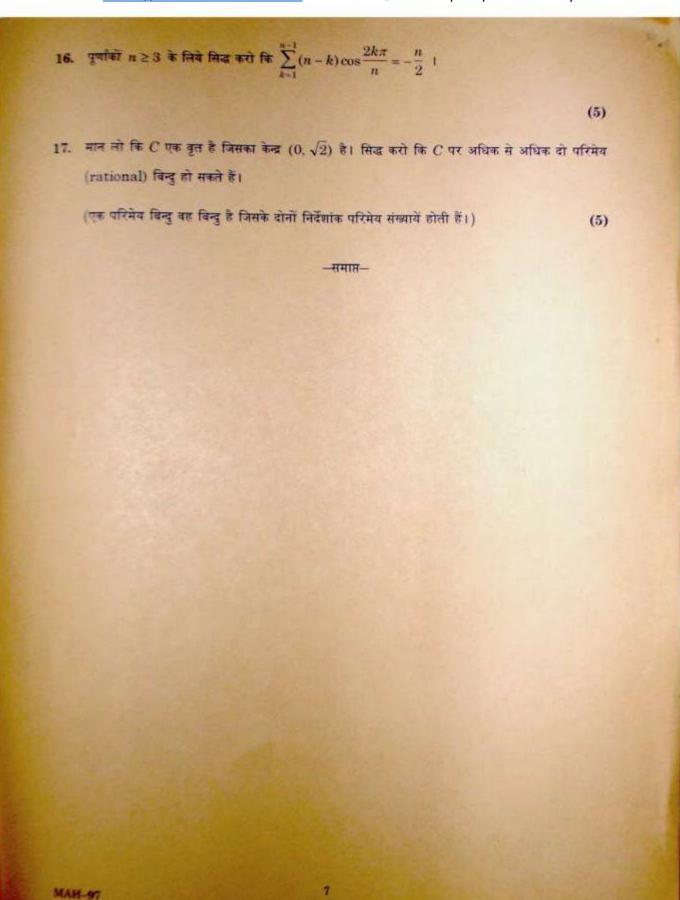
(5)

- (ii) $\int_{1}^{e^{2\pi}} \frac{\pi \sin (\pi \ln x)}{x} dx$ का मान है।
- (iii) मान लो कि $\frac{d}{dx}F(x) = \frac{e^{\sin x}}{x}$, जहाँ x > 0 है। यदि $\int_{1}^{4} \frac{2e^{\sin x^{2}}}{x} dx = F(k) F(1)$, तो k का एक संभावित (possible) मान है।

- 12. यदि ममुचय (set) (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) में से p तथा q यादृच्छीकृत रूपसे (randomly) प्रतिस्थापन के साथ (with replacement) चुने गये हैं, तो समीकरण x² + px + q = 0 के मूलों के वाम्नविक होने की प्रायिकता (probability) ज्ञात करों।

(5)

(5)


(5)

(5)

- 13. मान लो कि u(x) तथा v(x) अवकल समीकरणों (differential equations) $\frac{du}{dx} + p(x)u = f(x)$ तथा $\frac{dv}{dx} + p(x)v = g(x)$ को कमण्राः संतुष्ट (satisfy) करते हैं, जहाँ p(x), f(x) तथा g(x) सतत फलन हैं। यदि किसी x_1 के लिये $u(x_1) > v(x_1)$ हो तथा सभी $x > x_1$ के लिये f(x) > g(x) हो तो सिद्ध करो कि कोई भी विन्दु (x, y), जहाँ $x > x_1$ है, समीकरणों y = u(x) तथा y = v(x) को संतुष्ट नहीं करेगा।
- 14. मान लो कि S एक वर्ग (square) है, जिसका क्षेत्रफल 1 इकाई (unit) है। S की प्रत्येक मुजा पर किसी बतुर्मुंज (quadrilateral) का एक शीर्ष (vertex) है। यदि a, b, c तथा d चतुर्मुंज की मुजाओं की लम्बाइयां है, तो सिद्ध करो कि $2 \le a^2 + b^2 + c^2 + d^2 \le 4$.

15. मान लो कि
$$f(x) = \text{Maximum} \{x^2, (1-x)^2, 2x(1-x)\}, \text{ जहाँ } 0 \le x \le 1$$
 है। वकों $y = f(x), x - 3$ स, $x = 0$ तथा $x = 1$ होरा परिवद्ध प्रदेश (region) का क्षेत्रफल (area) ज्ञात करो

MAH-97

भौतिकी 1997

PH(H)

समय : तीन घण्टे

सूचना :

पुणांक : 100

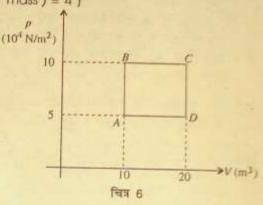
- इस प्रश्न पत्र में 15 प्रश्न हैं। प्रत्येक प्रश्न के उत्तर के बाद 3 सेमी रिक्त स्थान छोड़कर एक शैतिज रेखा खोचिए और उसके बाद ही नये प्रश्न का उत्तर आरम्भ कीजिए। बावें हाशिये में संगत (corresponding) प्रश्न संख्या अवश्य लिखिए।
- 2. सभी प्रश्नों के उत्तर दीजिए।
- उत्तर केवल आपके प्रवेशपत्र (Admit Card) में प्रदर्शित आपके द्वारा चुनी हुई भाषा में लिखे जाने चाहिए।
- अपने उत्तरों में केवल अरबी अंकों (Arabic numerals) (0, 1, 2, 9) का प्रयोग कीजिए, चाहे उत्तर लिखने के लिए आपकी चयनित भाषा कोई भी हो।
- 5. ऋणात्मक अंकन नहीं होगा।
- प्रश्न पत्र के दायों ओर किनारे पर कोण्ठकों में दिये गये अंक प्रश्नों / उप-प्रश्नों के पूर्णांक दशति हैं।
- 7. प्रत्येक प्रश्न के सभी उप-प्रश्नों के उत्तर एक जगह पर दीजिए।
- 8. लघुगणकीय सारणी (Logarithmic Tables) के प्रयोग की अनुमति है।
- 9. गणन पट्टिका (Slide Rule) / परिकलक (Calculator) का प्रयोग वर्जित है।

उपयोगी आंकड़े :

गुरुत्वीय त्वरण	g	=	10 ms ⁻²
आवोगाद्रो संख्या	NA	=	6.025 × 10 ²⁶ kmol ⁻¹
सार्वत्रिक गैस नियतांक	R	=	8-31 J mol ⁻¹ K ⁻¹
हवा में ध्वनि का वेग	v	=	330 ms ⁻¹
निर्वात में प्रकाश का वेग	С	=	3.0 × 10 ⁸ ms ⁻¹
प्लांक नियतांक	h	=	6.63 × 10 ⁻³⁴ Js
इलेक्ट्रॉन का आवेश	е	=	1.6 × 10 ⁻¹⁹ C
इलेक्ट्रॉन का द्रव्यमान	me	=	9.1 × 10 ⁻³¹ kg
प्रोटॉन का द्रव्यमान	m	=	1.67 x 10 ⁻²⁷ kg
रिडवर्ग नियतांक	R	=	$1.097 \times 10^7 \text{ m}^{-1}$
	$1/(4 \pi \epsilon_0)$	=	9.0 × 10 ⁹ Nm ² C ⁻²
	1 eV	2	1.6× 10-19

बेछ है। सही/बेछ विकल्प को चयन काणप पन पुस्तिका में उप-प्रश्न के क्रमांक के सामने लिखिए। प्रश्नपत्र में है।	विकल्प दिये गये हैं जिनमें से केवल एक विकल्प सही / 11 संबन्धित अक्षर a, b, c अथवा d को अपनी उत्तर आपके उत्तरों में उप-प्रश्नों का क्रम वही होना चाहिए जो (15 × 1 = 15) -अक्ष के समान्तर, मूल बिन्दु से दूर, एक रेखा पर चल रहा
 (1) ता इव्यमान का एक पिण्ड एकसमान पन संग है। मूल बिन्दु के सापेक्ष (with respect to (2) शून्य है। 	origin) इसका काणाय सपन (original momentum) (b) स्थिर रहता है।
(८) बढता आता है।	(d) घटता जाता है।
(#) 450 Hz वाली एक सोटी एक स्थिर प्रेक्षक द्वारा सुनौ गई आवृत्ति (frequency) का) की ओर 33 m/s की गति से बढ़ रही है। प्रेक्षक मान (Hz में)
(a) 409 (b) 429	
(#) एक नेत्र चिकित्सक द्वारा निर्धारित चश्मा एव लेन्स (concave lens) के संयोग से	क उत्तल लेन्स (convex lens) और एक अवतल बना है। उत्तल लेन्स की फोकल दूरी (focal फोकल दूरी 25 cm है। इस संयोग से बने लेन्स
(a) +1.5 (b) −1.5 ≹1	(c) + 6-67 (d) - 6-67
ादशा म (along the x-axis) जमीन से	d particle) क्षैतिज तल (x-y) में, x-अक्ष की कुछ ऊँचाई पर चल रहा है। अचानक यह m/4 जाता है। अगर विस्फोट के तुरन्त बाद छोटा खंड ज्ञा खंड (b) y= +20 cm (d) y= -20 cm
	गकार कक्षा में चक्कर लगा रहा है। यदि इसकी इसकी स्थितिज ऊर्जा (b) 1.5 E ₀ (d) E ₀
 (vi) 300 K पर ऑक्सीजन गैस के अणुओं translational energy) व वर्ग मा 6-21 × 10⁻²¹ J और 484 m/s है। औ 600 K पर इनके लगमग मान क्रमश: (a) 12-42 × 10⁻²¹ J, 968 m/s (c) 6-21 × 10⁻²¹ J, 968 m/s होंगे। 	ों की औसत स्थानांतरीय ऊर्जा (average 1924 मूल गति (rms speed) क्रमशः क्सीजन का आचरण आदर्श गैस जैसा मानते हुए (b) 8-78 × 10 ⁻²¹ J, 684 m/s (d) 12-42 × 10 ⁻²¹ J, 684 m/s

(vii) एक इलेक्ट्रॉन (द्रव्यमान ma) जो प्रारम्भ में शून्य गति स्थिति में है, एकसमान विद्युत-क्षेत्र (uniform electric field) में एक निश्चित दूरी तय करने में 1, समय लेता है। एक प्रोटॉन (इव्यमान mp), भी जो प्रारम्भ में शून्य गति स्थिति में है, उसी एकसमान थियुत-क्षेत्र में उतनी ही दूरी तय करने में 12 समय लेता है। गुरुत्वाकर्षण बल को उपेक्षणीय मानते हुए 17/1 का अनुपात लगभग (b) (mp/me)¹⁰ (0) 1 (c) $(m_e/m_p)^{1/2}$ (d) 1836 होगा। (viii) एक असमान अनुप्रस्थ परिच्छेदित क्षेत्र (non-uniform cross-section) वाले यातु वालक में अपरिवर्ती धारा (steady current) बह रही है। इस स्थिति में चालक की अनुलम्बाई में (along the length) जो राशि / राशियाँ स्थिर रहती है/हैं, वह/वे है/हैं (a) धारा (current), विद्युत्-क्षेत्र (electric field) और अपवाह वेग (drift speed) (b) केवल अपवाह वेग (C) धारा और अपवाह वेग (d) केवल धारा (x) सूर्य और नार्थ स्टार के विकिरण की तीव्रता का अधिकतम मान क्रमशाः 510 nm और 350 nm तरंगदैर्घ्य (wavelength) पर है। यदि ये तारे कृष्णिकाओं (black bodies) की तरह आचरण करते मान लिये जायें, तो सूर्य और नार्थ स्टार की सतह के तापमानों (surface temperatures) का अनुपात (0) 1.46 (b) 0.69 (c) 1.21 (d) 0.83 होगा। (x) टंगस्टन से K, X-किरणों का उत्सर्जन (emission) 0.021 nm तरंगदैर्घ्य पर होता है। इस परमाणु के K और L ऊर्जा-स्तरों (energy levels) का अंतर लगभग (d) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13-6 eV होगा। (xi) एक अचालक रिंग (non-conducting ring), जिसकी त्रिज्या 0.5 m है, तथा जिसकी परिधि पर 1-11×10-10C का आवेश (charge) असमान रूप से वितरित है, अपने चारो ओर विद्युत्क्षेत्र (electric field) E उत्पन्न करता है। अगर I=0 रिंग का केन्द्र हो, तो $\int_{l=\infty}^{l=0} \mathbf{E.dl}$ का मान (b) -1 V (c) -2 V (0) + 2 V (d) शून्य हागा। (xii) 0-1 MΩ का एक प्रतिरोधक (resistor) और 10 μF का एक संधारित्र (capacitor) समान्तर संयोग में, 1.5 V के स्रोत से, जुड़े हैं। स्रोत का प्रतिरोध (resistance) उपेक्षणीय है। संघारित्र को 0.75 V तक आवेशित होने के लिए आवश्यक समय (सेकण्डों में) लगभग (a) ~ (b) log_2 (c) log10 2 (d) য়군리 होगा। PH(H) 3


(x)) जब एक अर्धचालक (semiconductor) पर 2480 nm से छोटी तरंगदेखें (wovelength) बाला विद्युत्-चुम्बकीय विकिरण पड़ता है, तो इसकी विद्युत्-चालकता बढ़ती है। इस अर्धचालक का बैंड-अंतराल (Band Gap) (c) 0.5 eV (d) 1.1 eV (b) 0.7 eV (c) 0.9 eV 31 (xiv) अग्रदिशिक (forward) तथा पश्चदिशिक (reverse) बायस (bias) सिलिकन p-n जंक्शन में आवेश-वाहकों के चलन (motion) की मुख्य विधि (mechanism) (a) अग्रदिशिक बायस में अपवाह (drift) और पश्चदिशिक में विसरण (diffusion) (b) अग्रदिशिक बायस में विसरण और पश्चदिशिक में अपवाह (c) दोनों में विसरण (d) दोनों में अपवाह होती है। (xv) दो समभारिक परमाणुओं 20Cu⁶⁴ और 30Zn⁶⁴ के द्रव्यमान क्रमश: 63.9298 u और 63-9292 u है। इन आंकड़ों से निष्कर्ष निकल सकता है कि (a) दोनों समभारिक परमाण् स्थायी हैं।

- (b) Zn⁶⁴ रेडियोधर्मी है जो β-क्षय (decay) द्वारा Cu⁶⁴ में क्षयमान हो रहा है।
- (c) Cu⁶⁴ रेडियोधर्मी है जो γ-क्षय (decay) द्वारा Zn⁶⁴ में क्षयमान हो रहा है।
- (d) Cu⁶⁴ रेडियोधर्मी है जो β-क्षय (decay) द्वारा Zn⁶⁴ में क्षयमान हो रहा है।
- 2. एक पतली छड़, जिसका द्रव्यमान (mass) उपेक्षणीय (negligible) है और अनुप्रस्थ परिच्छेदित क्षेत्र (area of cross-section) 4×10⁻⁶ m² है, अपने एक सिरे से ऊर्घ्वाधर लटकाई गई है। 100 °C पर इस छड़ की लम्बाई 0.5 m है। इस छड़ को 0 °C तक ठंडा किया गया, पर इसके निचले सिरे पर एक द्रव्यमान लटकाकर इसको सिकुड़ने से रोका गया। ज्ञात कीजिए कि (/) कितना द्रव्यमान लटकावर इसको सिकुड़ने से रोका गया। ज्ञात कीजिए कि (/) कितना द्रव्यमान लटकावर इसको सिकुड़ने से रोका गया। ज्ञात कीजिए कि (/) कितना द्रव्यमान लटकावर गया और (//) छड़ में कितनी ऊर्जा संचित है ? दिया गया है कि छड़ का यंग का प्रत्यास्थता गुणांक (Young's modulus) = 10¹¹ N/m², अनुदैर्घ्य प्रसार गुणांक (Coefficient of linear expansion) = 10⁻⁵ K⁻¹ और g = 10 ms⁻² (5)
- 3. दोहरे शोशे वाली एक खिड़की (a double-pane window) कमरे के ऊष्मारोधन (thermal insulation) के काम में आती है। ऐसी एक खिड़की शीशे की दो पट्टियों से बनी है। प्रत्येक पट्टी का क्षेत्रफल 1 m² और मोटाई 001 m है। दोनों पट्टियों के बीच 0.05 m मोटाई की स्थायी हवा की एक परत है। स्थायी अवस्था में, कमरा-शोशा अंतरापृष्ठ (Room-glass Interface) और शोशा-वायुमण्डल अंतरापृष्ठ (glass-outermost Interface) के तापमान क्रमश: 27 °C और 0 °C पर स्थिर है। खिड़को से ऊष्मा-प्रवाह की गति (rate of heat flow) ज्ञात कीजिए। इस अवस्था में बाकी अंतरापृष्ठ तापमानों (Interface temperatures) को भी ज्ञात कीजिए। शीशे और हवा की ऊष्मा-चालकताएँ (thermal conductivities) क्रमश: 0.8 और 0.08 W m⁻¹ K⁻¹ है।
- (5)
- 4. यूरेनियम के एक अयस्क (ore) में U²³⁸ और Pb²⁰⁶ के न्यूबिलआई (nuclei) का अनुपात 3 है। अगर अयस्क में वर्तमान संपूर्ण Pb, U²³⁸ का ही अन्तिम स्थिर उत्पाद (final stable product) है, तो अयस्क की आयु ज्ञात कीजिए। U²³⁸ की अर्ध-आयु (half-life) = 4.5 × 10⁹ वर्ष मानिए।

PH(H)

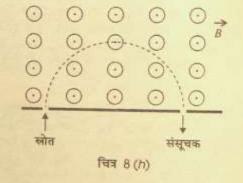
(5)

- 5. एक खुले आर्गन पाइप (open organ pipe) की प्रथम अधिछवि (first overtone) एक बंद आर्गन पाइप (closed organ pipe) की प्रथम अधिछवि से 2.2 Hz आवृत्ति (frequency) से विस्पन्दित (beats) होती है। बंद आर्गन पाइप की मूल आवृत्ति (fundamental frequency) 110 Hz है। आर्गन पाइपों की लम्बाइयाँ ज्ञात कीजिए।
- 6. एक-परमाणुक (monoatomic). आदर्श (ideal) गैस He के 2 kg नमूने को प्रक्रम (process) ABC से और उसी गैस के एक अन्य 2 kg नमूने को प्रक्रम ADC से ले जाया जाता है। (चित्र 6 देखिए), (He गैस का अणुभार (molecular mass) = 4)
 - (1) A. B. C और D अवस्थाओं में He का तापमान ज्ञात कीजिए।
 - (i) बाद में क्या यह बता सकते हैं कि कौन-सा नमूना प्रक्रम ABC से ले जाया गया है और कौन-सा नमूना प्रक्रम ADC से ले जाया गया है ? (उत्तर केवल हाँ या नहीं में दें।)
 - (iii) प्रक्रम ABC और प्रक्रम ADC में कितनी-कितनी ऊष्मा प्रवाहित (involved) हुई ?

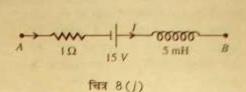
(5)

(5)

(5)


- 7. यंग के प्रयोग (Young's experiment) में प्रयुक्त लाल प्रकाश का तरंगदैष्य्य (wavelength) λ=7×10⁻⁷ m है। जब एक पतली काँच की पट्टिका, जिसका अपवर्तनांक (refractive index) उपर्युक्त लाल प्रकाश के लिए 1.5 है, को व्यतिकारी किरणपुंज (interfering beams) में से एक के पथ में रखा जाता है, तो केन्द्रीय दीप्त फ्रिन्ज (central bright fringe) 10⁻³ m से विस्थापित होकर उस जगह पहुँच जाता है जहाँ पहले पाँचवाँ दीप्त फ्रिन्ज था। काँच पट्टिका को मोटाई ज्ञात कीजिए। जब लाल प्रकाश की जगह हरा प्रकाश जिसका तरंगदैष्य 5×10⁻⁷ m है, प्रयोग करते हैं, तब केन्द्रीय दीप्त फ्रिन्ज विस्थापित होकर उस जगह पहुँच जाता है जहाँ प्रारम्भ में लाल प्रकाश के प्रयोग के समय छठा दीप्त फ्रिन्ज था। हरे प्रकाश के लिए काँच पट्टिका का अपवर्तनांक ज्ञात कीजिए। तरंगदैष्य के परिवर्तन से फ्रिन्ज की चौडाई में आये परिवर्तन का भी आकलन (estimate) कीजिए।
- निम्नलिखित प्रश्नों में रिक्त स्थानों की पूर्ति कोजिए। अपनी उत्तर-पुस्तिका में उप-प्रश्न क्रमांक a. b. लिखकर उसके प्रत्येक रिक्त स्थान/स्थानों के लिए उत्तर लिखिए। आपके उत्तर उसी अनुक्रम में होने चाहिए जैसे प्रश्न पत्र में हैं।
 (10×2= 20)
 - (d) ऊष्ट्र्वाधर समतल (vertical plane) में एक प्रक्षेपास्त्र (projectile) का प्रक्षेप-पद्म (trajectory) y = ax - bx² है, जहाँ a एवं b स्थिरांक हैं। x और y क्रमश: प्रक्षेप बिन्दु (point of projection) से प्रक्षेपास्त्र की क्षैतिज (horizontal) व ऊष्ट्र्वाधर (vertical) दूरियाँ हैं। इस प्रक्षेपास्त्र की अधिकतम ऊँचाई है और क्षैतिज से प्रक्षेप कोण (angle of projection) है।
 - (b) विद्युत्-चालकता को विमा (dimensions) है।

PH(H)


- (g) एक स्लिट, जिसकी चौड़ाई d है और जो एक 0.5 m फोकल दूरी वाले लेन्स के सामने रखी है, को 5-89 × 10⁻⁷ m तरंगदैर्घ्य के प्रकाश से अभिलम्बवत् प्रकाशित किया जाता है। यदि मुख्य विवर्तन महत्तम (central diffraction maximum) के दोनों ओर प्रथम विवर्तन न्यूनतम (first diffraction minimum) के बीच की दूरी 2 × 10⁻³ m है, तो स्लिट की चौड़ाई (d) m है।
- (h) चित्र 8 (h) में दशांया एकसमान चुम्बकीय क्षेत्र (uniform magnetic field) B और स्लिट समुदाय (slit system) उच्च ऊर्जा वाले आवेशित कणों (high energy charged)

particles) के लिए संवेग फिल्टर (momentum filter) का काम करता है। B टेसला मान के चुम्बकीय क्षेत्र पर यह फिल्टर 5-3 MeV ऊर्जा वाले हर α-कण का संचार (transmits) करता है। जब चुम्बकीय क्षेत्र का मान 2-3 B टेसला कर दिया जाता है और फिल्टर से इयूटरॉनों (deuterons) का संचार (pass) किया जाता है, तो फिल्टर से संचारित हर इयूटरॉन की ऊर्जा

MeV \$1

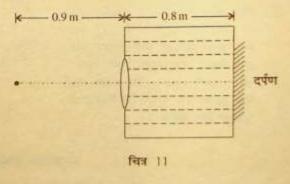
PHOH

- 9. ऊपर से खुले, एक बड़े पात्र का द्रव्यमान (mass) उपेक्षणीय है और उसका अनुप्रस्थ परिच्छेदित क्षेत्र (area of cross-section) A है। पात्र एक चिकने क्षैतिज फर्श (smooth horizontal floor) पर रखा है और इसमें ρ घनत्व (density) और m₀ द्रव्यमान का द्रव (liquid) भग है। इसकी एक पार्श्व दीवार में पेंदे के पास एक छोटा-सा छेद है जिसका अनुप्रस्थ परिच्छेदित क्षेत्र A/100 है। यदि समय 1 = 0 पर द्रव छेद से क्षैतिज दिशा में, बहना शुरू करे, तो
 - (1) पात्र का त्वरण (acceleration) ज्ञात कोजिए तथा
 - (11) जब 75% द्रव बह गया हो, तब पात्र का वेग ज्ञात कीजिए।

10. दो गुटके A और B, जिनके द्रव्यमान क्रमशा: m और 2 m हैं, एक द्रव्यमान-रहित (mossless), अवितान्य (inextensible) धागे और घर्षणारहित घिरनी (frictionless pulley) द्वारा एक स्थायी क्रिकोणीय वेज (triangular wedge) पर चित्र 10 के अनुसार रखे हुए हैं। वेज दोनों तरफ घितिज से 45° का कोण बनाता है। गुटका

A और वेज तथा गुटका B और वेज के बोच घर्षण गुणांक (coefficient of friction) क्रमशा: 2/3 और 1/3 हैं। यदि यह गुटकों का समूह विराम-अवस्था से छोड़ा जाये, तो ज्ञात कीजिए —

() A का त्वरण


(ii) धागे में तनाव तथा

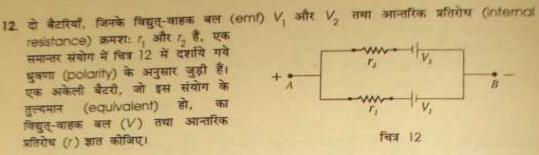
(III) गुटके A पर लगने वाले धर्षण बल का परिमाण और दिशा

 पानी से भरे टैंक की एक पार्श्व दीवार में हुए एक छेद को काँच के एक पतले समोत्तल (equiconvex) लेन्स से बंद किया गया है। समोत्तल लेन्स का हवा में अपवर्तनांक (refractive index) μ = 3/2 और उसकी फोकल दूरी 0.3 m है। जल का अपवर्तनांक 4/3 है। टैंक में लेन्स

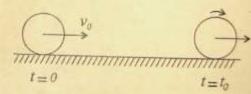
7

के ठीक विपरीत दूसरी दीवार पर एक समतल दर्पण इस तरह रखा है कि लेन्स का मुख्य अक्ष दर्पण पर अभिलम्ब है (चित्र 11)। सेन्स और दर्पण के बीच की दूरी 08 m है। एक छोटी वस्तु, टैंक के बाहर, लेन्स के सामने व उसके अक्ष पर, लेन्स से 09 m की दूरी पर रखी गयी है। चित्र 11 में दिखाई गईं व्यवस्वा (System) द्वारा बने वस्तु के प्रतिबिन्ब की लेन्स से दूरी बताइए।

PH(H)


A m 45° 45° 45°

चित्र 10


(5)

(5)

resistance) क्रमश: 1, और 1, है, एक समान्तर संयोग में चित्र 12 में दर्शाये गये ध्वणा (polarity) के अनुसार जुड़ी हैं। एक अकेली बैटरी, जो इस संयोग के तुल्यमान (equivalent) हो, का विद्युत्-वाहक बल (V) तथा आन्तरिक प्रतिरोध (१) ज्ञात कीजिए।

- 13. एक अति-सूक्ष्म छड़ चुम्बक (bar magnet), जिसका द्विष्ठुव आघूर्ण (dipole moment) M है, x दिशा में इंगित करता है और उसी दिशा में v गति से चल रहा है। 'a' त्रिज्या का एक छोटा बंद वर्तुल चालकीय लूप (closed circular conducting loop), जिसका स्वप्रेरकत्व (self-inductance) उपेक्षणीय है, y-z तल में है। लूप का केन्द्र x= 0 है तथा इसका अक्ष (axis) x-अक्ष से संपाती (coincident) है। यदि लूप का विद्युत्-प्रतिरोध R है, तो छड़ चम्बक को रोकने वाले बल का मान ज्ञात कीजिए। मानिए कि छड़ चुम्बक की लूप के केन्द्र से दुरी X>> 口青1
- 14. एक क्षरणीय (leaky) समान्तर पडिका संधारित्र (parallel plate capacitor) पूरी तरह से एक पदार्थ से भरा है, जिसका परावैद्युतांक K = 5 और विद्युत्-चालकता (electrical conductivity) $\sigma = 7.4 \times 10^{-12} \Omega^{-1} m^{-1}$ है। यदि t = 0 सेकण्ड पर पट्टिका पर आवेश $q = 8.85 \mu C$ तो, तो समय 1= 12 सेकण्ड पर क्षरण धारा (leakage current) ज्ञात कीजिए।
- 15. एक एकसमान चक्रिका (uniform disc) का द्रव्यमान (mass) m और त्रिज्या (radius) R है। चक्रिका को एक खुरदरे क्षैतिज फर्श (Rough Horizontal Floor) पर Vo वेग से क्षैतिज में (horizontally) इस प्रकार प्रक्षेपित किया जाता है कि समय 1= 0 पर चक्रिका की गति पूर्णत: संपी-गति (purely sliding motion) से प्रारम्भ होती है परन्तु समय $t = t_0$ पर चक्रिका पूर्णत: बेलनी-गति (purely rolling motion) प्राप्त कर लेती है। (चित्र 15 देखिए।)
 - (/) समय 10 पर चक्रिका के संहति-केन्द्र (centre of mass) का बेगमान ज्ञात कीजिए।
 - (ii) यदि धर्वण गुणांक (coefficient of friction) µ हो, तो 10 का मान ज्ञात कोजिए तथा घर्षण बल द्वारा किया गया समय-निर्भर कार्य और समय 1 >> 10 पर घर्षण बल द्वारा किया गया संपूर्ण कार्य (total work) ज्ञात कीजिए।

चित्र 15

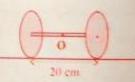
(5)

PHILH)

8

- Paper Ends -

(5)


(5)

(5)

er: 368714
B
पूर्णांक : 100 🐛
ा, आपके डारा चुनी हुई, भाषा
या खींचिए और उसके बाद ही
गए जिस कम में वे प्रक्रन में दिए
81
m/s
-34 Js
9 C
¹ kg
R
9 J

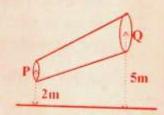
- एक गाड़ी +x दिशा में 4 m/s के बेग से जा रही है। गाड़ी पर बेठा व्यक्ति अपन सापक (relative to himself) 6 m/s के बेग से एक पत्थर फेकता है। याड़ी के निर्देश तंत्र में (frame of reference) पत्थर y-z समलल में उर्ध्व z दिशा से 30° का कोण बनाते हुए फेका जाता है। अपने प्रपथ के सबसे ईल विन्दु पर वह पत्थर अपने ही समान द्रव्यमान के एक अन्य पिण्ड से टकराता है जो एक पहकी डाल से L लस्वाई के धागे से लटका है। पत्थर व पिण्ड के बीच में संघट्टन पूरी तरह अग्रत्यास्थ हे (completely inelastic collision) जिससे पत्थर पिण्ड के अंदर धंस जाता है।
 - मंयुक्त पिण्ड की गति, संघट्टन के तुरंत वाद, जमीन पर खडे एक प्रेक्षक के मापेक्ष में जान करें।
 - (ii) यदि अपनी पेरवर्ती गति में धागे के क्षैतिज दिशा के समांतर हो जाने पर उसमें तनाव जूल्य हो जाता है, तो उसकी-लम्बाई L ज्ञात करें।
- 2. $m_1 = 10 \text{ kg}$ तथा $m_2 = 5 \text{ kg}$ इव्यमान के दो गुटके एक दूसरे से 0.3 m लम्बे इव्यमान रहित न खिचने वाले (inextensible) धागे से जुड़े हैं। ये गुटके एक घूर्णी मंच (turntable) के व्याम (diameter) पर रखे हुए हैं। m_1 व मंचके बीच घर्षण गुणांक 0.5 है, जवकी m_2 और मंच के बीच कोई घर्षण नहीं है। मंच 10 rad/s के कोणीय वेग से केन्द्र O से गुजरने हुए ऊर्ख अक्ष के गिर्द घूर्णन कर रहा है। गुटके मंच के व्यास पर केन्द्र के दोनों ओर इस प्रकार रखे भये है कि m_1 की दूरी O से 0.124 m है। घूर्णी मंच पर बैठे प्रेक्षक के सापेक्ष गुटके विराम जवस्था में है।
 - (i) m1 पर घर्षण वल जात करें।
 - (ii) पूर्णी मंच का न्यूनतम कोणीय वेग क्या होना चाहिए कि गुटके अपने वर्तमान न्यान से फ़िसल जाएं ?
 - (iii) गुटके किस प्रकार रखे जाने चाहिए कि m1 पर घर्षण बल जून्य हो जाए व धागा कमा रहे ? (5)

3. 2 kg द्रव्यमान और 10 cm त्रिज्या की दो पूर्णतया समान बुत्ताकार चक्रिकाये (circular disks) एक द्रव्यमान रहित 20 cm लम्बी छड़ दारा इस प्रकार नुड़ी हैं कि छड़का अक्ष चक्रिकाओं के समतलके लम्बवत हे, व दोनों चक्रिकाओं के केन्द्र से गुजरता है (चित्र 3)। इस रचना (construction) को एक ट्रक पर इस प्रकार रखा गया है कि छड़ का अक्ष क्षेतिज हे तथा अक्ष ट्रक के बेग की दिला के लम्बवत है। ट्रक की सतह व चक्रिकाओं के बीच इतना चर्पण है कि वे ट्रक पर विना फिसले चुढ़क सफती है (roll without slipping)। ट्रकके बेग की दिला को प्र-अक्ष तथा ऊपरी ऊर्छा दिला को 2-अक्ष मानिये। यदि ट्रक का त्वरण 9 m/s² हे तो :

चित्र 3

- प्रत्यक चक्रिका पर घर्षण बल जात करें।
- (ii) रचना के सहति-केन्द्र O के गिर्द प्रत्येक चक्रिका पर लगनेवाले घर्षण बल आधुर्ण (torque) का परिमाण व दिशा जान करें। वल आधुर्ण को सदिश रूपमें एकांक सदिशों i, j, k (जो x, y, z दिशा में है) के माध्यम से अभिव्यक्त करें।

PHH-97

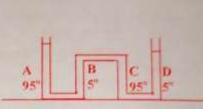

स्तथ I में कुछ भौतिक राजियाँ दी गयी है जिनकी ऊर्जा के मन्निकट मान के लिये विकल्प स्तंभ II में दिये सबे हैं। सडी/भेठ विकल्प को पहिचान कर उसके मान का क्रमांक (A, B,) उप-प्रश्न के क्रमांक (L IL) के सामने लिखिये। आपके उत्तर में भौतिक राणियों का क्रम वही हो जैसा कि स्तंभ I में दिया सवा है। (4 × 1 = 4)

			CORD AN	
(1)	तापीव न्यूटॉन की ऊर्जा	(A)	0.025 eV	
(11)	क्ष-किरण (x-ray) की ऊर्जा	(B)	0.5 eV	
(iii)	प्रति न्युक्लिओंन की बंधन ऊर्जा	(C)	3 eV	
(iv)	धातु की प्रकाश विद्युतीय देहली	(D)	20 eV	
		(E)	10 keV	

(F) 8 MeV

artar II

5. एक अस्पान (Non-viscous) इव, जिसका घनत्व (1000 kg/m³) स्पायो है, एक धारारेखी प्रवाह (streamline motion) में परिवर्ती अनुप्रस्य काट (variable cross section) की, एक ननी में बह रहा है, (चित्र 5)। ननी ऊंछां समतल में आनल (inclined) रुची है। P व Q बिन्दुओं पर, जिनकी ऊँचाई कम्मा: 2 व 5 मीटर हे, ननी का अनुप्रस्य काट क्रमण: 4×10⁻¹ m² व 8×10⁻³ m² है। बिन्दु P पर डव का वेग 1 m/s है। इव के बिन्दु P में Q तक प्रवाह के अंतराल में दाब व पुरन्ताकर्षण बनों झारा किया गया कार्य, प्रति एकांक आयतन (per unit volume) जात करे।



বির 5

- (5)
- 6. / आयुत्ति (frequency) की युन वजाता हुआ एक वेंड एक दीवार की ओर v_b गति से जा रहा है। एक तार v_a गति से वेंड के पीछे कल रही है। यदि ध्वनि की गति v है, तो कार में बैठे व्यक्ति द्वारा सुनी जाने वाली जिन्मद आयुत्ति (Bent frequency) का व्यंजक झात करें।
- 7. एक सील डिपरमालूक आदर्श मेस ($\gamma = 1.4$) को A विन्दुसे प्रारंभ होनेवाले एक चकीय प्रक्रममें ले जाया साला है। प्रक्रम A->B रुद्धाप्म संपीडन (Adiabatic compression) है, B->C समदाबी प्रसार (isobaric expansion) है, C->D रुद्धाप्म प्रसार (Adiabatic expansion) तथा D->A सम अपनीवक (isochoric) प्रक्रम है। आयतन का अनुपाल $V_A/V_B = 16$ तथा $V_C/V_B = 2$ है। A पर तापमान 300 K है। B और D बिन्दुओं पर गैस का सापमान तथा चक्रीय प्रक्रमको दक्षता ज्ञाल करें।

(5)

8. चित्र 8 में दिखाए गये उपकरण में शौगे की चार ऊर्ध्व नलियों को तीन क्षेतिज नलियों द्वारा जोड़ा गया है। बीच की दोनों ऊर्ख नलियों, B ब C, की ऊँचाई 49 cm है। दोनों बाहरी उर्छ्व नलियों, A ब D, वायुमंडल की ओर खुली हैं।A व C नलियों को 95°C के स्थिर तापसान पर रखा गया है, जबकि B ब D को 5°C के स्थिर तापसम पर रखा गया है। A ब D नलियों में दब के तल की ऊँचाई, तल रेखा से, क्रमश: 52.8 cm ब 51 cm है। द्वब का प्रसार गुणांक ज्ञात करें।

নিয় 8

(5)

- 9. इस प्रश्न के प्रत्येक उप-प्रश्न में उत्तर के लिए चार विकल्प दिये गये हैं जिनमें में केवल एक विकल्प सही/क्षेफ है। सही/क्षेफ विकल्प का चयन कीजिए तथा संबन्धित अक्षर A, B, C अथवा D को अपनी उत्तर पुस्तिका में उप-प्रश्न के कमांक के सामने लिखिए। आपके उत्तरों में उप-प्रश्नों का कम वहीं होना चाहिए जो प्रश्नपत्र में है। (9 × 1 = 9)
 - (i) O₂ (अणुक द्रव्यमान 32) अणुओं की ओसत स्थानान्तरीय (translational) गतिज ऊर्जा किसी विशेष तापमान पर 0.048 eV 81 N₂ (अणुक द्रव्यमान 28) अणुओं को स्थानान्तरीय गतिज ऊर्जा इसी तापमान पर क्या होगी?

(A) 0.0015 (B) 0.003 (C) 0.048 (D) 0.768

(ii) किसी पात्र में T तापमान पर रखी O₂ गैस (अणुक द्रव्यमान 32) का दवाव P है। वैसे ही सर्वसम एक पात्र को यदि 2T तापमान पर He गैस (अणुक द्रव्यमान 4) से भरा जाय तो उसमें गैस का दवाव क्या होगा?

(A) P/8 (B) P (C) 2P (D) 8P

(iii) एक प्रोटॉन, एक इयूटरॉन तथा एक ऐल्फा (α) कण जिनकी गतिज ऊर्जा एक समान है, एक निवत चुंबकीय क्षेत्र में वर्तुल (circular) प्रपत्रों में घूम रहे हैं। यदि r_p, r_d, r_a कमज्ञः प्रोटॉन, इयुटरॉन तथा ऐल्फा कणों के प्रपथ की विज्याएं हैं तो

(A)
$$r_{\alpha} = r_p < r_d$$
 (B) $r_{\alpha} > r_d > r_p$ (C) $r_{\alpha} = r_d > r_p$ (D) $r_p = r_d = r_{\alpha}$

(iv) एक गोलाकार कृष्णिका (Black Body) जिसकी त्रिज्या 12 cm है 500 K पर 450 W शक्ति विकिरित करती है। यदि त्रिज्या को आधा कर दिया जाय और तापमान को दुगना कर दिया जाय तो विकिरित ग्रवित (Watt में) क्या होगी?

(A) 225 (B) 450 (C) 900 (D) 1800

(v) निम्नलिखित समीकरण एक तानित धार्ग में प्रसामी तरंग को निरूपित करता है।

$$y = A\sin(kx - \omega t)$$

1

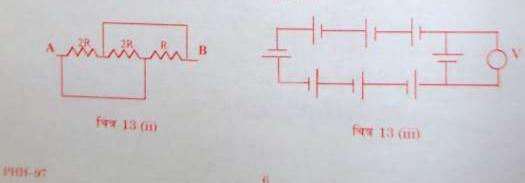
कण का अधिकतम वेग बया हे?

(A) Ass (B) w/k (C) dw/dk (D) x/t

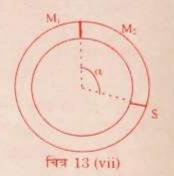
PHH-97

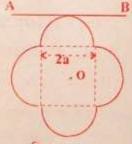
(vi) बोर मॉडल (Bohr model) के जनुसार निम्नलम अवस्था (Ground state) में स्थित डित: आयनित (Doubly ionised) Li परमाणु (z = 3) से इलेक्ट्रॉन को निकालने के लिए आवश्वक न्यूनलम ऊर्जा (eV में) क्या होगी।
(A) 1.51 (B) 13.6 (C) 40.8 (D) 122.4
(vii) 補電 9 (vii) 祥 दिसाये गये परिपव में दोनों डायोडों 159 Ω का अग्रप्रतिरोध (Forward resistance) 50 Ω है 50 Ω नथा परचवर्नी (Backward) प्रतिरोध अनन्त 100 Ω (infinite) है। यदि वेंटरी की वोल्टता 6 V है 100 Ω 100 Ω प्रतिरोध में वहने वाली धारा चित्र 9 (vii) (Ampere में) क्या होगी? चित्र 9 (vii)
(A) गुन्य (B) 0.02 (C) 0.03 (D) 0.036
(viii) निम्नलिखित प्रकथनों में कौन सा प्रकथन सत्य नहीं है।
(A) नेज अर्धचालक (intrinsic semiconductor) का प्रतिरोध तापमान बढ्ने से घटता है।
(B) शुद्ध Si में त्रिसंयोजक (trivalent) अपद्रव्य के अपमिश्रण से p-प्रकार का अर्धवालक वनता है।
(C) n-प्रकार के अर्धचालक में बहुसंख्यक वाहक (majority carriers) होल (hole) होते हैं।
(D) एक p-n संधि एक अर्धचालक डायोड का कार्य कर सकती है।
(ix) एक धानु की संतह पर जब 6 eV ऊर्जा के फोटॉन आपतित होते हैं तब प्रकाशिक इलेक्ट्रान की अधिकतम गतिज ऊर्जा 4 eV है। प्रयोग में निरोधी विभव (stopping potential) बोल्ट में क्या होगा?
(A) 2 (B) 4 (C) 6 (D) 10
10. हो धारियो (capacitors) A तथा B को, जिनकी धारिना 3 μ F द 2 μ F है, क्रमण्ञ: 100 V द 180 V के विभवालर पर आवेणित किया गया है। चित्र 10 में विषाए अनुसार धारियों की पट्टिकाओं को इस प्रकार बोहा गया है कि प्रत्येक धारिय का एक तार मुक्त है। A की ऊपरी पट्टिका धनावेणित है, जब कि B की ऊपरी पट्टिका अणावेणित है। एक आवेण रहित 2 μ F का वारिष्ट C. जिसकी दोनों पट्टिकाओं में चालकतार (Lead wires) लग है, उपरोक्त मुक्त तारों पर गिरकर परिपथ को पूर्ण करना है।
 तीमो धारित्रों पर अलिम जावेश ज्ञात करें।

परिएव पूर्ण होने के पहले व बाद में, निकाय में संचित स्थिर वेशुत ऊर्जा का परिमाण ज्ञात करें।


(5)

- 11. तीन अमीमित तम्बे पतले तार, जिनमें से प्रत्येक में धारा i एक ही दिशा में प्रवाहित हो रही है, एक गुरुखाकर्षण रहित दिकल्यान (space) के x-y समतल में रखे गये है। वीच का तार y-अक्ष पर है जबकि बाकी दो तार x = ± d पर है।
 - (i) ऐसे बिन्दुओं का बिन्दुपथ जान करें, जहाँ चुम्बकीय क्षेत्र B गून्य हो।
 - (ii) यदि बीच के तार को 2-अक्ष की ओर थोड़ा सा विस्थापित करके छाड़ दिया जाए, तो दिखाए कि वह तार सरल आवर्त गति (simple harmonic motion) करेगा। यदि तारों का रेखिक चनल (linear density) λ है, तो स्पेदन की आवृत्ति जात करें।
 (5)
- 12. दो समान्तर, चालक (conducting), क्षेतिज पटरियाँ को एक सेज पर जड़ दिया गया है। इन पटरियाँ को एक ओर से लघुपथित किया (shorted) गया है। पटरियाँ के बीच की दूरी L है। एक डव्यमान रहित चालक छड, जिसका प्रतिरोध R है, बिना घर्षण के पटरियाँ पर फिसल सकती है। छड़ को एक द्रव्यमान रहित घाने के द्वारा मेज के किनारे पर लगी घिरनी (pulley) के ऊपर से, एक m द्रव्यमान के गुटके से जोड़ा गया है (चित्र 12)। एक नियत चुम्बकीय क्षेत्र मेज के लम्बवत हे। यदि निकाय को विराम अवस्था से छोड़ा जाए तो


-



- (i) छड का अन्तिम वेग (terminal velocity) ज्ञात करें।
- (ii) जब छड़ का वेग, अपने अन्तिम वेग का आधा हो, उस पल गुटके का त्वरण ज्ञात करें।
 (5)
- 13. निम्नलिखित प्रथनों में रिक्त स्थानों की पूर्ति कीजिए। अपनी उत्तर-पुस्तिका में उप-प्रश्न कमांक i, ii, लिखकर उसके प्रत्येक रिक्त स्थान/स्थानों के लिए उत्तर लिखिए। पूरा वाक्य लिखने की आवध्यकता नहीं है। उत्तर उसी कम में लिखें जिस कम में उप-प्रथन दिये गये हैं। (11 × 2 = 22)
 - (i) एक छड़ जिसका भार w है दो समान्तर क्षुरधार (knife edge) A और B के आधार पर क्षेतिज दिशा में संतुलित (equilibrium) है। क्षुरधारों के बीच की दूरी d है। छड़ का संहति केन्द्र A से x की दूरी पर है। A पर अभिलम्ब प्रतिक्रिया ______ है, जबकी B पर अभिलम्ब प्रतिक्रिया ______ है।

- (iii) चित्र 13 (iii) में दिखाए गये परिपथ में प्रत्येक बैटरी 5 V की है, तथा प्रत्येक का आलारिक प्रतिरोध 0.2 ohm है। आदर्ण बोल्ट मीटर V में पाठ्यांक ______ V होगा।
- (v) दो पतले लेंस. एक इसरे की समस्पर्श अवस्था में, + 10 dioptre णवित का युग्म बनाते हैं। यदि लेंसों के बीच की दूरी 0.25 m हो जाए तो युग्म की णवित घटकर + 6 dioptre हो जाती हैं। लेंसों की फोकम दूरी _____m तथा ____m हैं।
- (vi) एक वास्तविक गैम के अवस्था समीकरण (equation of state) $\left(P + \frac{a}{V^2}\right)(V b) = RT$ में P, V तथा T कमणः दाव, आयतन और तापमान हैं, तथा R सार्वत्रिक गैस नियतांक है। इस समीकरण में अचर a की विमा (dimensions) b
- (viii) M द्रव्यमान का एक संसमित (symmetric) पटल एक वर्गाकार और अर्धवृत्ताकार आकृतियों से बना है (चित्र 13 (viii))। वर्ग की भुजा की लम्बाई 2a है। सहति केन्द्र से गुजरते हुए, पटल के लम्बचन अक्ष के गिर्द पटल का जड़त्व आघूर्ण 1.6 Ma² है। पटल के समलल में स्पर्णरेखा AB के णिई पटल का जहत्व आघूर्ण गरिया।

चित्र 13 (vm)

- (ix) एक कण का पृथ्वी (त्रिज्या Re) की सलह में ऊपरी उर्ध्व दिणा में प्रक्षेपित किया जाता है। कण की गतित्र ऊनां पलायन की (escape) न्यूनलम गतिज ऊर्जा की आधी है। कण पृथ्वी की सलह से ______ ऊँवाई तक जाएगा।
- (a) पूर्णी 1400 W / m² सौर ऊर्जा प्राप्त करती है यदि 0.2 m² क्षेत्रफल के लेंस पर पड़नेवाली मारी सौर ऊर्जा को 280 ग्राम द्रव्यमान के वर्फ के घन पर फोकस किया जाए, तो वर्फ को पिघलने में ______ मिनट का समय लगगा (बर्फ की गुप्त उप्मा 3.3×10⁵ J/kg 81)

PRHOT

- 14. बंग (Young) के प्रयोग में ऊपरी जिरीं (slit) को 1.4 अपवर्तनांक के काँच की पतली पट्टिका से दबा गया है। बानों हे जबकी निषली झिरीं को 1.7 अपवर्तनांक वाले एक दूसरे काँच की पट्टिका से दबा गया है। दोनों पट्टिकाओं की मोटाई एक जैसी है। 5400 Å तरंग देखां वाले प्रकाण द्वारा व्यतिकरण चित्राम (interference pattern) प्राप्त किया जाता है। परदे के बिन्दु P पर नहीं काँच की पट्टियों के लगाने से पहले केन्द्रीय अधिकतम तीव्रता (central maximum, n = 0) पाई जाती थी, वहां पर अब नीव्रता पहले की 3/4 है। देखा जाता है कि पहले की पाँचवी अधिकतम तीव्रता अब विन्दु P के नीचे है जबकि छटी न्युनतम तीव्रता P के ऊपर है। काँच की पट्टिकाओं की मोटाई झात कीजिये। (काँच की पट्टिकाओं द्वारा प्रकाण द्वारा प्रकाण द्वारा प्रकाण द्वारा प्रकाण है के पटिकाओं द्वारा पट्टिकाओं द्वारा प्रकाण है के क्रांग की पट्टिकाओं द्वारा पहले की पट्टिकाओं द्वारा की जायेग (काँच की पट्टिकाओं द्वारा प्रकाण गोवण को नगण्य माने।)
- 15. यह माने कि इलेक्ट्रॉन की दे ब्रागली (de Broglie) तरंग, किसी एक विम व्यूह (one dimensional array) के अणुओं के बीच में अप्रगामी तरंग (standing wave) इस प्रकार बना मकती है कि प्रत्येक अणु के स्थान पर (at the site) निस्पंद (node) बनें। इस प्रकार की अग्रगामी तरंग तब बनती पाई जाती है जबकि व्यूह में अणुओं के बीच की दूरी d = 2Å है। इसी प्रकार की एक अन्य अग्रगामी तरंग तब बनती पाई जाती है जब d को बढ़ा कर 2.5 Å किया जाता है, परन्तु d के इन दो मानों की दीच किसी और मान पर ऐसी अग्रगामी तरंग नहीं बनती। इलेक्ट्रॉन वोल्ट में इलेक्ट्रॉन की ऊर्जा जात करें तथा d के उस न्यूनतम मान को ज्ञात करें जिसपर ऐसी अग्रगामी तरंग वन सके।
- 16. क्युरियम ²⁴⁸/₃₆ Cm की माध्य आयु (mean life) 10¹³ s है। यह तत्व दो प्रकार से क्षय हो सकता है स्वतः विखण्डन (spontaneous fission) तथा ऐल्फा (α) क्षय। विखण्डन की प्रायिकता 8% है जबकि ऐल्फा क्षय की प्रायिकता 92% है। प्रत्येक विखण्डन में 200 MeV ऊर्जा निकलती है। ऐल्फा क्षय के लिये दिया गया है कि

 ${}^{248}_{96} \text{Cm} = 248.072220 \text{ u},$ ${}^{244}_{94} \text{Pu} = 244.064100 \text{ u},$ ${}^{4}_{9} \text{He} = 4.002603 \text{ u}.$

 $10^{23} {
m Cm}$ अणुओं में से निकलनेवाली शक्ति को ज्ञात करें। ($1{
m u}=931~MeV/c^2$)

(5)

– समाप्त –