CH

रसायन विज्ञान 1996

261604

समय : तीन यन्टे

पुर्णीक : 100

सचना :

- इस प्रश्न पत्र में 20 प्रश्न हैं। प्रत्येक नये प्रश्न का उत्तर नये पृष्ठ पर आरंभ कीजिए। (1)
- सभी प्रश्नों के उत्तर दीजिए । (ii)
- उत्तर केवल आपके प्रवेशपत्र (admit card) में प्रदर्शित आपके द्वारा चुनी हुई भाषा में लिखे (iii) जाने चाहिए।
- केवल इन्डो-अरबी (Indo-Arabic) अंको (0,1,2,39) के प्रयोग की ही अनुमति है. (iv) प्रश्नों के उत्तर चाहे जिस भाषा में हों ।
- ऋणात्मक अंक नहीं दिए जायेंगे । (v)
- दक्षिणी कोर पर ब्रेकेट में लिखित अंक सम्बन्धित प्रश्न के लिए अंक सूचित करते हैं (vi)
- दिए गये प्रश्नों के सभी उप-प्रश्नों का उत्तर एक जगह दीजिए । (vii)
- लघुगणकीय सारणी (logarithmic table) के प्रयोग की अनुमति है । (viii)
- स्लाइड रूल अथवा परिकलक (calculator) के प्रयोग की अनुमति नहीं है । (ix)
- उपयोगी आंकड़े : (x)

 $= 6.023 \times 10^{23} \text{ mol}^{-1}$ एवोगैड्रो स्थिरांक NA = 1.987 cal K⁻¹ mol ⁻¹ गैस नियतांक R = 8.314 J K⁻¹mol⁻¹ = 0.082 litre atm K⁻¹ mol⁻¹ 1 फेराडे F = 96,500 coulombs mol⁻¹ प्लेन्क स्थिरांक $= 6.626 \times 10^{-34} \text{ J sec}$

बोल्ट्समैन स्थिरांक $= 1.381 \times 10^{-23} I K^{-1}$ k

प्रकाश का वेग $= 3 \times 10^8 \text{ m sec}^{-1}$

रिडसर्ग स्थिरांक = 109,677 cm⁻¹ RH

इलेक्ट्रॉनिक आवेश = 1.602 x 10⁻¹⁹ coulomb

1 ऐट्मॉस्फियर = 760 torr.

प्रमाणु क्रमांक (Atomic numbers)	H = 1 N = 7 Mg = 12 Cl = 17 V = 23 Zn = 30	B = 5 O = 8 P = 15 Ca = 20 Fe = 26 Br = 35	C = 6 F = 9 S = 16 Ti = 22 Cu = 29 I = 53
*** (amights)	Cs = 55 H = 1.0	C = 12.0	O = 16.0
परमाणु भार (Atomic weights)	Fe = 56.0	He = 4.0	N = 14.0

विकल्पी प्रश्नों (multiple choice questions) के लिए दिये गये चार उत्तरों में केवल एक सही है । सही विकल्प का चयन कीजिए और सम्बन्धित अक्षर (a), (b), (c) या (d) को उत्तर-पुस्तिका में उप-प्रश्न के क्रमांक के सामने लिखिए । प्रत्येक उप-प्रश्न के सही विकल्प लिखने पर ही अंक प्रदान किये जायेंगे ।

उदाहरण :

(i) कोनसा अणु समतलीय (planar) है ?

(a) NF_3 (b) NCl_3 (c) PH_3 (d) BF_3 BF_3 सही उत्तर / विकल्प है और इसे निम्न प्रकार से प्रदर्शित करना है।

उत्तर: (i) (d)

सभी संख्यात्मक प्रश्नों (numerical problems) में यदि तापमान न दिया हो तो इसे 25°C मान लीजिए।

1. $(5 \times 1 = 5)$

- (i) एक आदर्श गैसों के मिश्रण को द्रव हीलियम तापमान (4.22 K) तक ठंडा करके आदर्श विलयन बनाया जाता है । यह कथन सत्य है या असत्य ? दो लाइनों में अपने उत्तर का औचित्य बताइये (justify) ।
- (ii) परमार्ग्वीय हाइद्रोजन (atomic hydrogen) की बामर सीरीज़ में न्यूनतम तरंग-लम्बाई (wave length) संक्रमण (transition) के लिए तरंग-संख्या (wave number) की गणना कीजिए।

(iii) 25°C पर किसी अभिक्रिया का वेग नियत्तांक (rate constant) , सक्रियण ऊर्जा (activation energy) एवं आरहीनियस प्राचल (parameter) ऋमगः 3.0 x 10 s-1, $104.4 \; \text{kJ} \; \text{mol}^{-1} \;$ और $6.0 \times 10^{14} \; \text{s}^{-1} \; \frac{1}{6} \;$ । येग नियतांक का मान निम्न होगा यदि T→ ∞:

- (a) $2.0 \times 10^{18} \text{ s}^{-1}$
- (b) $6.0 \times 10^{14} \text{ s}^{-1}$
- (c) अनंत (infinity) (d) 3.6 x 10³⁰ s⁻¹

(iv) H2 (50K) और O2 (800K) के वर्ग माध्य मूल वेगों (root mean square velocities) का अनुपात निम्न है :

- (c) 1
- (d) 1/4

(v) 2s कक्ष के इलेक्ट्रॉन का कक्षीय कोणीय संवेग (orbital angular momentum) निम्न है :

- (a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$ (b) $\sqrt{2} \cdot \frac{h}{2\pi}$ (d) $\sqrt{2} \cdot \frac{h}{2\pi}$

एक 3.00 g नमूने, जिसमें Fe3O4, Fe2O3 और अक्रिय पदार्थ उपस्थित हैं, की अत्यधिक KI के घोल के साथ तनु H2SO4 की उपस्थिति में अभिक्रिया की जाती है । सम्पूर्ण आइरन Fe²⁺ में परिवर्तित हो जाता है तथा आयोडीन निकलती है । परिणामी घोल का आयतन 100 ml तनु कर दिया जाता है और इस तनु घोल के 20 ml में उपस्थित आयोडीन के अपचयन (reduction) के लिए 11-0 ml, 0-5 M Na₂S₂O₃ घोल की आवश्यकता पड़ती है । तनु घोल के 50ml में उपस्थित Fe²⁺ के आक्सीकरण (oxidation) के लिए 12-80 ml, 0-25 M तनु H2SO4 माध्यम में KMnO4 घोल लगा । नमूने में Fe2O3 एवं Fe3O4 की प्रतिशत मात्रा निकालिए ।

(5)

3. (i) 3,3 - डाइमिथाइल - ब्यूटेन - 2 - आल सान्द्र सल्फ्य्रिक अम्ल की उपस्थिति में पानी तया मुख्य उत्पाद (major product) टेट्रामिथाइलइयाइलीन देता है । उचित क्रियाविधि (mechanism) दीजिए ।

(2)

(ii) निम्नलिखित योगिकों में

अम्लता (acidity) का क्रम निम्न है :

- (a) III > IV > I > II
- (b) 1>IV>III>II
- (c) 11>1>111>1V
- (d) IV > III > I > II

(1)

	(iii)	नीचे दी हुई कैनिजरों अभिक्रिया म	
		2 Ph-CHO OH Ph-CH ₂ OH + PhCO ₂	(1)
		मंदतम पग (slowest step) निम्न है :	
		тон эт эпону (attack)	
		(a) कार्बोनल ग्रुप पर On कार्वोनल ग्रुप में स्थानान्तरण (transfer to the carbonyl group) (b) हाइड्राइड का कार्बोनिल ग्रुप में स्थानान्तरण (transfer to the carbonyl group)	
		(c) कार्बोसिलिक अम्ल से प्रोटॉन का अपाहरण (abstraction)	
		(d) Ph-CH2 OH से प्रोटॉन का निकलना ।	
	(iv)	KOH की उपस्थित में एनिलीन और क्लोरोफार्म की अभिक्रिया से बने दुर्गन्धयुक्त योगिक की संरचना (structure) लिखिए ।	(1)
4.	(i)	एक द्यात्विक तत्व (metallic element) जालक (lattice) में क्रिस्टिलित होता है जिसमें सतहों (layers) का अनुक्रम (sequence) ABABAB है । गोलों (spheres) का संकुलन (packing) लेटिस में रिक्तियाँ (voids) छोड़ देता है। आयतन के हिसाब से कितने प्रतिशत खाली स्थान लेटिस में रह जाता है ?	(3)
	(ii)	साइक्लोहेक्सेन (द्रव) और बेन्जीन (द्रव) के विरचन की मानक आणुविक पूर्ण ऊष्टमाएं (standard molar enthalpies of formation) 25° C पर क्रमणः -156 एवं $+49$ kJ mol $^{-1}$ हैं । साइक्लोहेक्सीन (द्रव) के हाइड्रोजनेसन की मानक पूर्ण ऊष्टमा (standard enthalpy) 25° C पर -119 kJ mol $^{-1}$ है । इन न्यासों (data) का उपयोग करके बेन्जीन की अनुनाद ऊर्जा (resonance energy) के मान की गणना कीजिए ।	(2)
5.	(i)	Cu^{2+}/Cu का मानक अपचयन विभव (standard reduction potential) +0.34 V है उपरोक्त कपल (couple) का मानक अपचयन विभव pH = 14 पर निकालिए $Cu(OH)_2$ का K_{sp} =1.0 x 10 $^{-19}$ है ।	1 (3)
	(ii)	NaCN के 0.50 M जलीय विलयन के pH की गणना कीजिए । CN के p K_b का मान 4.70 है ।	(2)
6		(5 x	1 = 5)
	(i)	परआक्षीबाइसल्फ्यूरिक अम्ल के एक मोल के जल-अपघटन (hydrolysis) से निम्न लिखित का निर्माण होता है:	
		(a) सल्म्यूरिक अम्ल के दो मोल	
		(b) परआक्सीमोनोसल्फ्यूरिक अम्ल के दो मोल	
		(c) सल्क्यूरिक अम्ल का एक मोल तथा परआक्सीमोनोसल्फ्यूरिक अम्ल का एक मोल	
		(d) सल्क्यूरिक अम्ल का एक मोल, परआक्सीमोनोसल्क्यूरिक अम्ल का एक मोल तथा हाइड्रोजन परआक्साइड का एक मोल ।	

(ii) निम्नलिखित यौगिकों को उनके तापीय-स्थायित्व (thermal stabilities) के बद्दे क्रम (increasing order) में व्यवस्थित किया गया है । सही व्यवस्था बताइये ।

K₂CO₃ (I) MgCO₃ (II)

Cacog (...)

CaCO₃ (III) BeCO₃ (IV)

- (a) I < II < III < IV
- (b) IV < II < III < I
- (c) IV < II < I < III
- (d) II < IV < III < I
- (iii) निम्नलिखित यौगिकों में समसंरचनात्मक (isostructural) जोड़े (pairs) बताइये ।

$$NF_3$$
 , NO_3^- , BF_3 , H_3O^+ , HN_3

- (a) [NF₃, NO₃] और [BF₃, H₃O⁺]
- (b) [NF₃, HN₃] 해र [NO₃, BF₃]
- (c) [NF3, H30+] aft [NO3, BF3]
- (d) [NF₃, H₃O⁺] और [HN₃, BF₃]
- (iv) CaC₂ के दो कार्बन परमाणुओं के बीच बन्धनों (bonds) की संख्या एवं प्रकार (type) बताइये।
 - (a) एक सिग्मा (σ) और एक पाई (π) बन्धन
 - (b) एक सिग्मा (σ) और दो पाई (π) बन्धन
 - (c) एक सिरमा (σ) और डेढ़ (one and half) पाई (π) बन्धन
 - (d) एक सिग्मा (o) बन्धन
- (v) CsBr3 के लिए कौनसा कथन सत्य है ?
 - (a) यह सहसंयोजक (covalent) यौगिक है ।
 - (b) इसमें Cs3+ एवं Br आयन होते हैं।
 - (c) इसमें Cs+ एवं Br3 आयन होते हैं।
 - (d) इसमें Cs^+, Br^- एवं लेटिस Br_2 अणु होते हैं ।
- 7. (i) एक हाइड्रोकार्बन A, जिसका सूत्र C_8H_{10} है, ओजोनोलिसिस करने पर केवल यौगिक $B(C_4H_6O_2)$ देता है। यौगिक B, अल्किल ब्रोमाइड , $C(C_3H_5B_r)$ पर शुष्क ईयर में मैगनीजियम एवं तत्पग्रचात् कार्बनडाइऑक्साइड की अभिक्रिया और अम्लीकरण (acidification) से भी प्राप्त किया जा सकता है । A, B और C का निर्धारण कीजिये तया अभिक्रियाओं के लिए रासायनिक समीकरण दीजिए ।

(ii)	योगिक D (C ₈ H ₁₀ O) आयोडीन के क्षारीय विलयन के साथ अभिक्रिया करके पीला अवक्षेप देता है। निस्पन्द (filtrate) अस्लीकरण करने पर सफेद ठोस E (C ₇ H ₆ O ₇) वेता है। D और E की संरचना लिखिए तथा E के निर्माण (formation) की व्याख्या (explain) कीजिये।
8. (i)	निम्नलिखित यौगिकों को डिघुव आधूर्ण (dipole moment) के बढ़ते क्रम में व्यवस्थित कीजिये ।
	टालुईन (I) , m -डाईक्लोरोबेन्जीन (II) , p -डाईक्लोरोबेन्जीन (IV)
	(a) I < IV < II < III (b) IV < I < II < III
	(c) IV < I < III < II (d) IV < II < I < III
(ii)	KF और HF के संयोजन से KHF2 बनता है। इस योगिक में निम्न उपस्थित हैं:
	(a) K ⁺ , F ⁻ और H ⁺ (b) K ⁺ , F ⁻ और HF
	(c) K ⁺ और [HF ₂] (d) [KHF] ⁺ और F.
(iii)	कॉपर सल्फेट के जलीय घोल में KCN अधिकता में मिलाने से कौनसा पदार्थ बनता है ?
	(a) Cu(CN) ₂ (b) K ₂ [Cu(CN) ₄]
	(c) K [Cu(CN) ₂] (d) K ₃ [Cu(CN) ₄]
(iv)	कौनसा यौगिक तनु HNO3 में नहीं घुलता है ?
	(a) HgS (b) PbS (c) CuS (d) CdS.
(v)	सोडियम यायोसल्फेट निम्न प्रकार से तैयार किया जाता है :
	(a) Na ₂ SO ₄ घोल का H ₂ S द्वारा अपचयन
	(b) Na2SO3 घोल को S के साथ क्षारीय माध्यम में उबालमा
	(c) H ₂ S ₂ O ₃ घोल का NaOH द्वारा उदासीनीकरण (neutralisation)
	(d) Na ₂ SO ₃ घोल को S के साथ अम्लीय माध्यम में उबालना ।
9. (i)	3-इयायल-2-पेन्टीन से निम्न अभिक्रिया स्थितियों (reaction conditions) में बने मुख्य आरगेनिक उत्पादों की संरचनाएं (structures) दीजिए ।
	(a) परऑक्साइड की उपस्थिति में HBr
	(b) Br ₂ /H ₂ O
	(c) Hg(OAc) ₂ /H ₂ O; NaBH ₄
	6

(ii) एक धूवण घूणंक (optically active) अल्कोहल A(C6H10O) का एक मोल, हाइड्रोजन के दो मोल का उत्प्रेरकी (catalytic) अवशोषण करके उत्पाद B देता है। योगिक B. CrO3 द्वारा ऑक्सीकरण का प्रतिरोधी (resistant) है तथा धुवण भूर्णकता (optical activity) नहीं दर्शांता है । A और B की संरचनाएं निकालिए ।

(2)

 $(5 \times 1 = 5)$ प्लेटिनम इलेक्ट्रोडों का प्रयोग करके Na2SO4 के तनु जलीय विलयन का वैद्युत अपबटन (electrolyze) किया जाता है। एनोड और कैथोड पर निम्न उत्पाद बनते हैं:

- (a) O2, H2
- (b) S₂O₈²⁻, Na
- (c) O2, Na

(d) S₂O₈²⁻, H₂

(ii) एक पात्र (container) के छोद से H2 के xml 5 सेकंड में नि:सरित (effuse) होते है। निम्न गैसों के उसी आयतन को समरूप (identical) स्थितियों में निःसरण (effusion) होने में कितना समय लगेगा ?

- (a) 10 計畫: He
- (b) 20 सेकंड: O₂
- (c) 25 前南言: CO
- (d) 55 前南宮: CO₂

(iii) N2O4 (g) के एक मोल को बन्द पात्र (closed container) में 300K और एक एट्मॉस्फियर पर रखा जाता है । इसे 600K तक गरम करने पर N2O4 (g) का NO2 (g) में विभाजन (decomposition) मात्रा (mass) के हिसाब से 20 % हो जाता है । परिणामी दबाव (resultant pressure) निम्न होगा :

- (a) 1.2 atm (b) 2.4 atm (c) 2.0 atm (d) 1.0 atm

उप-प्रश्नों (iv) तया (v) में खाली स्थान (blanks) भरिये (प्रत्येक खाली स्थान में <u>दो</u> गब्दों से अधिक मत लिसिए।)।

(iv) जब N2 . N2 में परिवर्तित होता है, N-N बन्धन दूरी ----- है और जब O2 , O2 में बदलता है , O-O बन्धन दूरी ----- है ।

(v) $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

साम्याबस्या (equilibrium) स्थापित होने पर उपरोक्त अभिक्रिया पर दबाव दस गुना

बढ़ा देने पर Kp का मान ---- जाता है।

 (i) इब बेन्नीन (घनत्व= 0.877 g ml⁻¹) का ग्राम अणुक आयतन (molar volume) 20°C पर वाष्मित (vaporise) होने पर 2750 गुना बढ़ जाता है और द्रव टालुईन (पनला= 0.867 gml⁻¹) का 20°C पर 7720 गुना बढ़ता है । 20°C पर बेन्जीन और टालुईन के विलयन का वाष्म दबाव (vapour pressure) 46.0 टार (torr) है । विलयन के ऊपर वाष्प में बेन्जीन का ग्राम अणुक भिन्न (mole fraction) निकालिए।

(ii) रेडियोएक्टिव क्षय (decay) के आधार पर ²²⁷Ac की अर्ध आयु (half life) 22.0 वर्ष है । क्षय दो समानान्तर पर्धों (paths) का अनुसरण (follows) करता है, एक से ²²³Th तथा दूसरे से ²²³Fr प्राप्त होता है। इन दोनों संतित केन्द्रकों (daughter nuclides) की प्रतिभत प्राप्ति (yield) क्रमभः 2.0 और 98.0 है । प्रत्येक पथ के लिए क्षय स्थिरांक (decay constant), (λ) की गणना कीजिए ।

(2)

(1)

(2)

(13)

(1)

- 12. (i) $FeSO_4$, Al_2 (SO_4) $_3$ और क्रोम एलम के जलीय घोल को Na_2O_2 की अधिकता में गर्म करके छान लिया जाता है । निम्नलिखित पदार्थ मिलते हैं :
 - (a) रंगहीन निस्पंद (filtrate) और हरा अवशेष (residue)
 - (b) पीला निस्पंद और हरा अवशेष
 - (c) पीला निस्पंद और भूरा अवशेष
 - (d) हरा निस्पंद और भूरा अवशेष ।
 - (ii) कैलिशियम, नाइट्रोजन में जलने पर सफेद चूर्ण बनाता है जो पानी की पर्याप्त मात्रा में घुलने पर गैस (A) तथा क्षारीय घोल देता है । यह घोल वायु के प्रमावन (exposure) से सतह पर पतली ठोस परत (thin solid layer) (B) देता है । यौगिकों A और B का निर्धारण कीजिये ।
 - (iii) [Cr (NH₃) 5 CO₃] CI का IUPAC नाम लिखिए 1
 - (iv) अरजेन्टाइट और KCN की अभिक्रिया के लिए संतुलित रासायनिक समीकरण लिखिए तथा विलयन में बने उत्पादों के नाम लिखिए ।
- 13. (i) निम्नलिखित अभिक्रिया अनुक्रम (reaction sequence) में मध्यवर्ती / उत्पादौ (intermediates/products) की संरचनाएँ (structures) बताइए ।

$$\begin{array}{c|c}
O \text{ Me} & O & \hline
 & 1. \text{ AICI}_3 & A \\
\hline
 & 2. \text{ H}_3\text{O}^+ & A
\end{array}$$

$$\begin{array}{c|c}
\hline
 & A & Zn(Hg)/HCI \\
\hline
 & B & H_3PO_4 & MeO \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline
 & B & A & A & A \\
\hline$$

- (ii) बेन्जोइक अम्ल का बेन्जीन में हिमांक अवनमन (depression in freezing point) द्वारा निकाला गया अणुभार (molecular weight) निम्नलिखित के तदनुरूपी होना चाहिए (corresponds to)
 - (a) बेन्जोइक अम्ल का आयनीकरण
 - (b) बेन्जोइक अम्ल का द्वितयन (dimerization)
 - (c) बेन्जोईक अम्ल का त्रितयन (trimerization)
 - (d) बेन्जोइक अम्ल का विलायकीयन (solvation)।

(iii) निम्न अभिक्रिया में उत्पाद की संरचना लिखिए ।

(iv) निम्न अभिक्रिया को समुचित संरचना (appropriate structure) के साथ पूर्ण करिये ।

- 14. (i) एक अल्किल हैलाइड, X, जिसका सूत्र $C_6H_{13}Cl$ है, पोटाशियम टरशियरी ब्यूटाक्साइड के साथ अभिक्रिया करके दो, Y एवं Z समावयवी (isomeric) अल्कीन्स (C_6H_{12}) देता है । दोनों अल्कीन हाइड्रोजनेशन करने पर 2,3-डाइमेथिल ब्यूटेन देते हैं । X,Y एवं Z की संरचनाएं बताइए ।
 - (ii) प्रकाश की उपस्थिति में टालुईन , ब्रोमीन के साथ अभिक्रिया करके बेन्जिल ब्रोमाइड और FeBr₃ की उपस्थिति में p-ब्रोमोटालुईन बनाती है । उपरोक्त तथ्यों की विवेचना करिये ।
- (i) P₄O₁₀ की संरचना (structure) खींचिये। P-O, एकल (single) बन्धन तथा द्विबंधन (double bond) की संख्या बताइए ।
 (3)
 - (ii) LiF और Lil में बन्धनों (bonding) की प्रकृति (nature) के अन्तर की विवेचना करिये।
- 16. (i) NH_4^+ का पानी में 25°C पर आयनन नियतांक (ionisation constant) 5.6 \times 10⁻¹⁰ है । अभिक्रिया $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ का वेग नियतांक 25° C पर $3.4 \times 10^{10} \text{ L mol}^{-1} \text{s}^{-1}$ है । पानी से अमोनिया को प्रोटॉन स्थान्तरण (transfer) का वेग नियतांक (rate constant) निकालिए ।
 - (ii) हावड्रोजन परमाणु को प्रोटॉन समझिए जो त्रिज्या (radius) ao, (बोर त्रिज्या) के कोटर (cavity) में अंतः स्थापित (embedded) है जिसका आवेश (charge) इलेक्ट्रॉन को अनंततः (infinitely) धीर कोटर में लाकर शून्य में उदासीन (neutralise) किया

	जाता है। उपरोक्त उदासीनीकरण प्रक्रम (neutralisation process) में किये कार्य (work done) के रूप में इलेक्ट्रॉन की निम्नतम अवस्था (ground state) में औसत पूर्ण ऊर्जा (average total energy) की गणना कीजिए । यदि औसत गतिज ऊर्जा का मान (magnitude of average kinetic energy) औसत स्थितिज ऊर्जा (potential energy) के मान का आधा है, तो औसत स्थितिज ऊर्जा का मान निकालिए ।	(2)		
17. (i)	Bi(NO ₃) ₃ के विलयन में धीर धीर KI विलयन मिलाने पर आरंभ में गहरा भूरा अवक्षेप बनता है और KI के आधिक्य में अवक्षेप घुलकर पीला निर्मल घोल देता है। उपरोक्त अभिक्रिया के लिए रासायनिक समीकरण दीजिए।	(2)		
(ii)	एक रंगहीन अकार्बनिक लवण (A) करीब 250°C पर पूर्ण रूप से विच्छेदित होकर केवल दो उत्पाद , (B) और (C) देता है तथा कोई अवग्रेष (residue) नहीं बचता है । आक्साइड (C) , सामान्य तापमान (room temperature) पर द्रव है और गीले लिटमस पेपर से उदासीन है जबिक गैस (B) उदासीन ऑक्साइड है । सफेद फॉस्फोरस (B) की अधिकता में जलकर सफेद प्रबल निर्जलीकारक (strong white dehydrating agent) बनाता है । उपरोक्त प्रक्रम (process) में होने वाली अभिक्रियाओं के लिए सन्तुलित रासायनिक समीकरण लिखिए ।	(3)		
18. (i)	कॉपर और जिंक के प्रथम एवं द्वितीय आयनन विभवों (ionisation potentials) की गुणात्मक तुलना कीजिए । प्रेक्षण (observation) की विवेचना कीजिए ।	(2)		
(ii)	निम्नलिखित रासायनिक समीकरणों को पूर्ण कीजिए:			
	KI + Cl ₂ KClO ₃ + I ₂			
	ऊपर दिए अभिक्रियाओं में बने उत्पादों का औचित्य बताइये (Justify)।	(3)		
19.	(5 x	1 = 5)		
(i) कौन सा हैलाइड न्यूनतम स्थायी (least stable) है और जिसका अस्तित्व (existence) संदेहात्मक (doubtful) है ?				
	(a) CI ₄ (b) GeI ₄ (c) SnI ₄ (d) PbI ₄			
(ii)	कौनसा आक्साइड उदासीन (neutral) है ?			
	(a) CO (b) SnO ₂ (c) ZnO (d) SiO ₂			
(iii) निम्न में से किसमें अधिकतम (maximum) अयुगलित (unpaired) इलेक्ट्रान हैं ?			
	(a) Mg^{2+} (b) Ti^{3+} (c) V^{3+} (d) Fe^{2+}			

(iv) निम्न को अम्ल शक्ति (acid strength) के घटते क्रम में व्यवस्थित करिये :

CIOH (I)

BrOH (II)

IOH (III)

(a) 1>11>111

(b) II>I>III

- (c) III>II>I
- (d) I>III>II

(v) $_{13}^{27}{\rm Al}$ स्थायी आइसोटोप है। $_{13}^{29}{\rm Al}$ का विघटन (disintegration) निम्न प्रकार से होगा :

- (a) α उत्सर्जन (emission)
- (b) β क्षय (decay)
- (c) पॉज़ीट्रॉन क्षय

(d) प्रोटॉन क्षय

20. (i) लुप्त यौगिकों (missing compounds) की समुचित संरचना सुझाइए । (कार्बन परमाणुओं की संख्या अभिक्रियाओं के दौरान बदलती नहीं है ।)

(3)

$$CH3$$
 $CH3$
 $CH3$
 $CH3$
 $A \xrightarrow{HIO_4} B \xrightarrow{HO} C$

(ii) बेन्जीन से m-ब्रोमोआयडोबेन्जीन किस प्रकार तैयार करेंगे ? (5-7 पदों (steps) से अधिक नहीं)

(2)

MA

गणित 1996 261604

समय : तीन घन्टे

(1) इस प्रश्नपत्र में 20 प्रश्न हैं । प्रत्येक प्रश्न का उत्तर नए पृष्ठ से शुरु करें । सुचना :

- (2) सभी प्रथन करने हैं ।
- (3) उत्तर केवल उसी भाषा में लिखें जो आपके प्रवेश पत्र में दी गई है ।
- (4) प्रश्नों के उत्तर में केवल इन्डो-अरबी (Indo-Arabic) अंको (0, 1, 2,, 9) का ही प्रयोग करे।
- (5) ऋणात्मक अंक नहीं दिये जाएंगे ।
- (6) प्रश्नों के अंक दाहिने हाशिये के कोष्ठों में दिये गए हैं ।
- (7) हर प्रथन के सभी भागों के उत्तर एक ही स्थान पर दें।
- (8) परिकलक (calculator), परिकलन पट्टिका (slide rule), लघुगणकीय (logarithmic), त्रिकोणमितीय (trigonometric) तथा सांख्यिकी (statistical) सारणी व ग्राफ पेपर का प्रयोग वर्जित है ।
- 1. इस प्रक्रन में चार भाग हैं । प्रत्येक भाग में केवल एक सही उत्तर है । प्रत्येक भाग में मही उत्तर को अपनी उत्तर-पुस्तिका में A, B, C अथवा D अक्षर लिख कर दर्शाएँ । उत्तर उसी क्रम में लिखें जिस क्रम में भाग लिखे गए हैं।
 - (i) तीन घटनाओं (events) A, B एवं C के लिए प्रायिकताओं (probabilities) P (A अयवा B में केवल एक घटित होती है (occurs)।) = P(B अथवा C में केवल एक घटित होती है।) = P(A अथवा C में केवल एक घटित होती है।) = p तथा P(तीनों घटनाएँ एक साथ घटित होती है।) = p^2 , जहाँ 0 है। तीनों घटनाओं <math>A, B और C में कम से कम एक के घटित होने की प्रायिकता है :
 - (A) $\frac{3p + 2p^2}{2}$

(B) $\frac{p + 3p^2}{4}$

(C) $\frac{p+3p^2}{2}$

(D) $\frac{3p + 2p^2}{4}$

- (ii) बिन्दु (point) P से वृत्त (circle) $x^2 + y^2 + 4x 6y + 9 \sin^2 \alpha + 13 \cos^2 \alpha = 0$ पर खींचे गए स्पर्भ रेखायुग्म (pair of tangents) के मध्य का कोण (angle) 2 α है। बिन्दु Pके बिन्दुपय (locus) का समीकरण (equation) हे :
 - (A) $x^2 + y^2 + 4x 6y + 4 = 0$
 - (B) $x^2 + y^2 + 4x 6y 9 = 0$
 - (C) $x^2 + y^2 + 4x 6y 4 = 0$
 - (D) $x^2 + y^2 + 4x 6y + 9 = 0$

(1)

(2)

(iii) $\sec^2 \theta = \frac{4xy}{(x+y)^2}$ सत्य है, यदि और देवल यदि (if and only if) (B) x = y, x ≠ 0 (A) x + y ≠ 0 (D) x≠0, y≠0 (1) (iv) धनात्मक पूर्णीकी (positive integers) n_1 , n_2 के लिए व्यंजक (expression) $(1+i)^{n_1}+(1+i^3)^{n_1}+(1+i^5)^{n_2}+(1+i^7)^{n_2}$, जहाँ $i=\sqrt{-1}$ है , का मान एक वास्तविक संख्या (real number) है, यदि और केवल यदि (B) $n_1 = n_2 - 1$ (A) $n_1 = n_2 + 1$ (D) $n_1 > 0$, $n_2 > 0$ (1) (C) $n_1 = n_2$ a के ऐसे मानों के अंतरालों (intervals) को ज्ञात करें जिनके लिए रेखा (line) y + x = 0बिन्दु $\left(\frac{1+\sqrt{2}\,a}{2},\frac{1-\sqrt{2}\,a}{2}\right)$ से बृत $2x^2+2y^2-(1+\sqrt{2}\,a)\times-(1-\sqrt{2}\,a)$ y=0 पर लीची गई दो जीवाओं (chords) को द्विभाजित (bisect) करती है । (5) इस प्रकृत में चार अधूरे कथन दिए गए हैं । प्रत्येक रिक्त स्थान के लिए ऐसा उत्तर सुनिश्चित करें ताकि कथन पूर्ण तथा सही हो जाए । उत्तर-पुस्तिका में कथन को पूर्ण करनेवाला उत्तर ही लिखें । उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिए गए हैं । (i) एक दीर्घवृत्त (ellipse) की उल्केन्द्रता (eccentricity) $\frac{1}{2}$ और एक नामि (focus) बिन्दु $P(\frac{1}{2},1)$ पर है। इसकी एक नियता (directrix) वृत्त $x^2 + y^2 = 1$ और अतिपरवलय (hyperbola) $x^2 - y^2 = 1$ की बिन्दु P के निकट स्थित उभयनिष्ट स्पर्श रेखा (common tangent) है । दीर्घवृत्त का मानक रूप (standard form) समीकरण (2) (ii) यदि f एक अंतराल (-5,5) में परिभाषित (defined) सम फलन (even function) है तो समीकरण $f(x) = f\left(\frac{x+1}{x+2}\right)$ को संतुष्ट करने वाले x के चार वास्तविक मान -----, (1) (iii) समीकरण $\tan^2\theta + \sec 2\theta = 1$ को संतुष्ट करने वाले θ का व्यापक मान (general value) ---- है । (1) (iv) किसी भी विषम (odd) पूर्णीक n≥1 के लिए $n^3 - (n-1)^3 + \dots + (-1)^{n-1} 1^3 = \dots$ (1)

- 4. एक बक्र (curve) y = f(x) बिन्दु P(1,1) से होकर जाता है । बिन्दु P पर बक्र का अभिलम्ब (normal) a (y-1) + (x-1) = 0 है । यदि बक्र पर स्थित किसी भी बिन्दु पर स्था रखा (tangent) की प्रवणता (slope) बिन्दु की कोटि (ordinate) के समान्यातिक (proportional) हो तो बक्र का समीकरण ज्ञान करें । y-अध (y-axis) , बक्र और बिन्दु P पर बक्र के अभिलम्ब हारा परिबद्ध क्षेत्र (area bounded) का क्षेत्रफल (area) भी ज्ञान करें ।
- (a) बिन्दु A, B और C परवलय (parabola) y² = 4ax पर स्थित हैं । परवलय की
 A, B और C पर स्पर्ण रेखाएँ , जोड़ी में लेने पर (taken in pairs), बिन्दु P, Q और
 R पर प्रतिच्छेद (intersect) करती हैं। त्रिभुज ABC और PQR के क्षेत्रफलों का
 अनुपात (ratio) ज्ञात करें ।
 - (b) वे सभी शून्येतर (non-zero) सम्मिश्र संख्याएँ (complex numbers) जात करें जो $\overline{Z} = i \, Z^2 \, \, \text{को संतुष्ट करती हैं } \, . \eqno(2)$

(5)

(5)

6. a>0, d>0 मानकर सारणिक (determinant) का मान निकालें ।

7. फलन $f(x) = \frac{1}{8} \ln x - bx + x^2$, x > 0,

जहाँ b≥0 एक अभल है , के उच्चिष्ठ (maxima) एवं गिम्निष्ठ (minima) बिन्दु जात करें।

- 8. एक चतुष्फलक (tetrahedron) ABCD के शीर्ष (vertices) A, B और C के स्थिति सदिश (position vectors) क्रमशः 1 + 1 + 1 + 1 k, 1 और 3 1 हैं । शीर्ष D से सम्मुख फलक (opposite face) पर शीर्षलम्ब (altitude) त्रिभुज (triangle) ABC की A से होकर जाने वाली माध्यिका रेखा (median line) को बिन्दु E पर मिलता है । यदि भुजा (side) AD की लम्बाई 4 और चतुष्फलक का आयतन (volume) 2√2/3 है तो बिन्दु E की सभी संभव स्थितियों के लिए उसके स्थिति सदिश ज्ञात करें ।
- 9. (a) समीकरण $x^3 x^2 + \beta x + \gamma = 0$

को संतुष्ट करने वाली वास्तविक संख्याएँ x_1, x_2, x_3 समान्तर श्रेडी (A.P.) में हैं । उन अंतरालों (intervals) को जात करें जिनमें β और γ स्थित होंगे । (3)

- (b) बिन्दु A से बृत्त $x^2 + y^2 = \frac{a^2}{2}$ तथा परवलय $y^2 = 4ax$ पर उभयनिष्ठ स्पर्ग रेखाओं, यूत्त की संस्पर्ग जीवा (chord of रेखाएँ शीची जाती हैं। उभयनिष्ठ स्पर्ग रेखाओं, यूत्त की संस्पर्ग जीवा (quadrilateral) contact) और परवलय की संस्पर्ग जीवा द्वारा बनाए गए चतुर्भृज (quadrilateral) का क्षेत्रफल जात करें।
- 10. एक फलन $f\colon TR\to TR$, जहाँ TR वास्तविक संख्याओं का समुन्वय (set) है, को $f(x)=\frac{\alpha\;x^2\;+6x\;-8}{\alpha\;+6x\;-8x^2}$

द्वारा परिभाषित किया गया है । α के उन मानों का अंतराल जात करें जिनके लिए f आच्छादक (onto) है । क्या $\alpha=3$ के लिए फलन एकैकी (one-to-one) है ? अपने उत्तर का औचित्य बताएँ ।

11. (a) माना वक्र $y=(\tan x)^n$ और रेखाओं x=0 , y=0 व $x=\frac{\pi}{4}$ द्वारा परिवद्ध क्षेत्र का क्षेत्रफल A_n है । सिद्ध करें कि n>2 के लिए $A_n+A_{n-2}=\frac{1}{n-1}$

और निगमन करें (deduce)

$$\frac{1}{2n+2} < A_n < \frac{1}{2n-2} \tag{3}$$

(2)

(2)

- (b) एक आयत (rectangle) PQRS की भुजा PQ रेखा y = mx के समान्तर (parallel) है और शीर्ष P, Q व S क्रमण रेखाओं y = a, x = b व x = -b पर स्थित हैं । शीर्ष R का बिन्द्रपथ ज्ञात करें ।
- 12. इस प्रकृत में तीन अधूरे कथन दिए गए हैं । प्रत्येक रिक्त स्थान के लिए ऐसा उत्तर सुनिश्चित करें ताकि कथन पूर्ण तथा सही हो जाए । उत्तर-पुस्तिका में कथन को पूर्ण करनेवाला उत्तर ही लिखें । उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिए गए हैं ।
 - (i) माना $f(x) = [x] \sin\left(\frac{\pi}{[x+1]}\right)$,

 जहाँ [•] महत्तम पूर्णांक फलन (greatest integer function) को निरूपित (denote)

 करता है । f का प्रांत (domain) ———— है और f के प्रांत में असातत्य बिन्दु (points of discontinuity) ———— हैं ।

 - (iii) वृत x²+y²-2x=0 द्वारा रेखा y=x पर काटा गया अंतः खंड (intercept)
 AB है। ऐसा वृत, जिसका एक व्यास (diameter) AB है, का समीकरण
 है।

- 13. इस प्रक्रन में तीन अधूरे कथन दिए गए हैं । प्रत्येक रिक्त स्थान के लिए ऐसा उत्तर मुनिश्चित करें ताकि कथन पूर्ण तथा सही हो जाए । उत्तर-पुस्तिका में कथन को पूर्ण करनेवाला उत्तर ही लिखें । उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिए गए हैं ।
 - (i) माना n और k ऐसे घनात्मक पूर्णीक है कि $n \ge \frac{k(k+1)}{2}$ है । $x_1 + x_2 + \dots + x_k = n$ को संतुष्ट करने वाले हलों (solutions) (x_1, x_2, \dots, x_k) जहाँ $x_1 \ge 1, x_2 \ge 2, \dots, x_k \ge k$ तथा सभी पूर्णीक हैं, की संख्या ———— है ।
 - (ii) यदि शून्येतर x के लिए $af(x) + bf\left(\frac{1}{x}\right) = \frac{1}{x} 5$, जहाँ $a \neq b$ है, ती $\int_{1}^{2} f(x) \, dx = ------------ होगा \quad I$ (2)

(iii)
$$\lim_{x \to 0} \left(\frac{1 + 5x^2}{1 + 3x^2} \right)^{\frac{1}{x^2}} = \dots$$
 (1)

14. (a) माना

$$f(x) = \begin{cases} x e^{ax}, & x \le 0 \\ x + ax^2 - x^3, & x > 0 \end{cases}$$

जहाँ a एक धनात्मक अचल (constant) है । उस अंतराल को ज्ञात करे जिसमें f'(x) वर्धमान (increasing) है ।

(b)
$$\int \frac{(x+1)}{x(1+xe^x)^2} dx$$
 का मान निकालें । (2)

15. मूल बिंदु (origin) से जाने वाले उस वक्र का समीकरण, y = f(x) रुप में, जात करें जो अवकल समीकरण (differential equation)

$$\frac{dy}{dx} = \sin(10 x + 6y)$$
को संतुष्ट करे । (5)

- 16. (a) गणितीय आगमन (mathematical induction) के प्रयोग ढारा सिद्ध करें कि $(3^{2^n}-1)$, सभी पूर्णांकों $n \ge 1$ के लिए 2^{n+2} ढारा विभाज्य (divisible) है परन्तु 2^{n+3} ढारा विभाज्य नहीं है । (3)
 - (b) अंतराल $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ में θ के उन सभी मानों को ज्ञात करें जो समीकरण $(1 \tan \theta) (1 + \tan \theta) \sec^2 \theta + 2 \tan^2 \theta = 0$ को संतुष्ट करते हैं । (2)
- 17. दो वैनी (vans) में प्रत्येक की सीटें (seats) अंकित (numbered) हैं तथा दोनों ही वैनों में तीन सीटें आगे और चार सीटें पीछे हैं । तीन बालिकाओं तथा नौ बालकों को इन वैनों में बैठाने के कितने तरीके हैं ? यदि तीनों बालिकाओं को एक साथ पीछे की

निकटवर्षी (adjacent) सीटौं पर बैठाना हो तो बैठाने के कितने तरीके हो सकते हैं ? यदि बैठाने के सभी तरीके समप्रायिक (equally likely) हों तो तीनों यालिकाओं के एक साथ पीछेवाली निकटवर्ती सीटों पर बैठे होने की प्रायिकता क्या है ?

(5)

(2)

18. एक वृत्त तीन विंदुओं A, B और C से हो कर जाता है और रेखा खंड (line segment) AC उसका एक व्यास है । बिंदु A से हो कर जाने वाली एक रेखा जीवा BC को वृत्त AC उसका एक व्यास है । बिंदु A से हो कर जाने वाली एक रेखा जीवा BC को वृत्त के अंदर बिंदु D पर प्रतिच्छेद करती है । यदि कोण (angles) DAB और CAB क्रमण के अंदर बिंदु D पर प्रतिच्छेद करती है । यदि कोण (angles) के बीच की क्षीर β है तथा बिंदु A और रेखा खंड DC के मुद्रय बिंदु (mid point) के बीच की दूरी ते है, तो सिद्ध करें कि वृत्त का क्षेत्रफल

$$\frac{\pi d^2 \cos^2 \alpha}{\cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \cos (\beta - \alpha)}$$
 (5)

- 19. इस प्रकृत में तीन अधूरे कथन दिए गए हैं । प्रत्येक रिक्त स्थान के लिए ऐसा उत्तर सुनिश्चित करें ताकि कथन पूर्ण तथा सही हो जाए । उत्तर-पुस्तिका में कथन को पूर्ण करनेवाला उत्तर ही लिखें । उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिए गए हैं ।
 - (i) एक शून्येतर सदिश (vector), a, सदिश î, î + î द्वारा निर्धारित समतल (plane)
 और सदिश î î , î + k द्वारा निर्धारित समतल की प्रतिच्छेद रेखा के समान्तर है।
 सदिश a और सदिश î 2î + 2 k के मध्य का कोण ----- है।
 - (ii) n > 0 市 लिए,

(iii)
$$\overline{uf} = x e^{xy} = y + \sin^2 x \ \overline{e} \ \overline{n} \ x = 0 \ \ \overline{q} = ---- \ \overline{e}^{1} = 1$$
 (1)

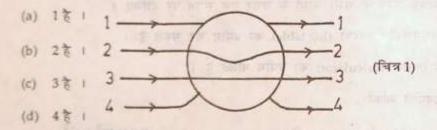
- 20. इस प्रश्न में तीन अध्रेर कथन दिए गऐ हैं। प्रत्येक रिक्त स्थान के लिए ऐसा उत्तर सुनिश्चित करें ताकि कथन पूर्ण तथा सही हो जाए । उत्तर-पुस्तिका में कथन को पूर्ण करनेवाला उत्तर ही लिखें । उत्तर उसी क्रम में लिखें जिस क्रम में कथन दिए गए हैं ।
 - (i) यदि हैं और टें कोई भी दो असेरेख (non-collinear) मात्रक सदिश (unit vectors) है और बें कोई सदिश है तो

$$(\vec{a} \cdot \vec{b}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|} (\vec{b} \times \vec{c}) = ----,$$
 (2)

(ii)
$$\overline{q}$$
 \overline{g} $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$, \overline{g} \overline{g}

(iii) एक त्रिभुज ABC में a:b:c = 4:5:6 है। परिवृत्त (circumcircle) की त्रिज्या का अंतःवृत्त (incircle) की त्रिज्या से अनुपात (ratio) ————है।

PH भौतिकी 1996


क्रम्प : होन फर्ट

हुचना : (1) इस प्रश्नपत्र में 15 प्रश्न हैं । हर नये प्रश्न का उत्तर नये पृष्ठ पर आरंभ

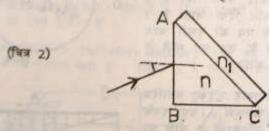
- (2) सभी प्रश्न हल करने हैं ।
- (3) उत्तर केवल आपके प्रवेशपत्र (admit card) में प्रदर्शित आपके द्वारा चुनी हुई भाषा में तिखे जाने चाहिए ।
- (4) उत्तर लिखते समय केवल इन्डो-अरबी अंकों (0, 1, 2, ----- , 9) के प्रयोग को अनुमति है, चाहे उत्तर लिखने के लिए आपकी चयनित भाषा कोई भी हो ।
- (5) ऋणात्मक अंकन नहीं होगा ।
- (6) दौयी ओर किनारे पर कोष्टकों में दिये गये अंक प्रश्न के पूर्णीक दर्शाते हैं।
- (7) प्रत्येक प्रश्न के सभी भागों के उत्तर एक स्थान पर दीजिए।
- (8) लपुगणकीय सारणी (log table) का प्रयोग कर सकते हैं ।
- (9) परिकलक (calculator) का प्रयोग वर्जित है ।
- (10) उपयोगी आंकड़े :

नियात में प्रकाश का वैग	c	= 3.0 X 10° ms ⁻¹
प्लैक नियतांक है (अध्यान कार्या कर्मा कर्मा		$= 6.63 \times 10^{-34} \text{ Js}$
इलेक्ट्रॉन का द्रव्यमान	me	$= 9.1 \times 10^{-31} \text{ kg}$
इलेक्ट्रॉन का आवेश	e	$= 1.6 \times 10^{-19} \text{C}$
सार्वित्रक गेस नियतीक	R	= 8.31 J mol ⁻¹ K
गुरुत्वीय त्वरण	g	$= 10 \text{ m s}^{-2}$
हवा में ध्वति का वेग	v	= 330 ms ⁻¹
रिडवर्ग नियतीक	R∞	$= 1.097 \times 10^7 \mathrm{m}^{-1}$
नाय की गुष्त उपमा	Ls	= 540 kcal/kg
परमाणु द्रव्यमान मात्रक (कर्जा तुल्य)	u	= 931.4 MeV

- इस प्रश्न के प्रत्येक भाग में चार विकल्प दिये गये हैं जिनमें से एक या एक से अधिक विकल्प कही है। सही विकल्प (विकल्प) का चयन कीजिए तथा संबन्धित अक्षर (अक्षरों) विकल्प सही है। सही विकल्प (विकल्प) का चयन कीजिए तथा संबन्धित अक्षर (अक्षरों) इक्किट की अपनी उत्तर पुस्तिका में प्रश्न के उस भाग के क्रमांक के सामने लिखिए। इक्किट की उत्तरों में प्रश्न के भागों का क्रम वहीं होना चाहिए जी प्रश्न पत्र में है। प्रत्येक आपके उत्तरों में प्रश्न के भागों का क्रम वहीं होना चाहिए जी प्रश्न पत्र में है। प्रत्येक आपके जिल्ला अंक तभी दिए जायेंगे जब सभी सही विकल्प (विकल्प) को तथा एक भी भाग के लिए अंक तभी दिए जायेंगे जब सभी सही विकल्प (विकल्प) को तथा एक भी पानत विकल्प को न लिखा गया हो।
 - (i) एक आवेशित बेलनाकार संघारित्र (capacitor) के बलयाकार अंतराल (annular region) में विद्युत-क्षेत्र की तीवता E का परिमाण
 - (a) सब बिन्दुओं पर एक समान है।
 - (b) आन्तरिक बेलन के पास वाले बिन्दुओं की तुलना में बाहरी बेलन के पास वाले बिन्दुओं पर अधिक है।
 - (c) 1/ाके अनुरुप बदलता है । यहाँ । अझ से दूरी है ।
 - (d) 1/r2 के अनुरुप परिवर्तित होता है । यहाँ r अक्ष से दूरी है ।
 - (ii) धातु का बना एक ठोस गोला एक समागी (uniform) विद्युत-क्षेत्र में रखा हुआ है । चित्र 1 में दिलाई गई रेखाओं में से सही बल रेखा

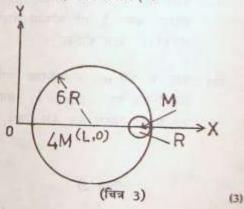
- (iii) एक आदर्श गैस का तापमान 120K से 480 K तक बढ़ा दिया गया है । यदि 120K पर गैस के अणुओं का वर्ग-माध्य-मूल (root-mean-square) वेग v हो तो 480K पर इसका
 - (a) 4v हो जाता है।
- (b) 2v हो जाता है।
- (c) v/2 ही जाता है।
- (d) v/4 हो जाता है ।
- (iv) बिम्ब (object) की सभी स्थितियों के लिए निम्नालिखित में से कौन आभासी व सीधा प्रतिबिम्ब (image) बनाता है / बनाते है ?
 - (a) उत्तन तेंस
- (b) अवतल लेंस
- (c) उत्तल दर्पण
- (d) अवतल दर्पण
- (v) निम्ननिधित में से किन ठोस पदार्थों में होल (holes) आवेश-वाहक (charge-carriers)
 - (a) নীল (intrinsic) সর্ঘরণেক
- (b) आयनिक ठोस (ionic solids)
- (c) p-अर्धचालक
- (d) घातुएँ

- 2. 10 m ऊंची पहाड़ी पर रखी हुई दो तोपें, कुछ समय के अन्तर पर एक-एक गोला, समान चाल 5 v3 m s⁻¹ से दागती हैं। एक गोला क्षेतिज दिशा में तथा दूसरा क्षेतिज दिशा में तथा दूसरा क्षेतिज दिशा में तथा दूसरा क्षेतिज दिशा से 60 का कोण बनाते हुए ऊपर की ओर दागा जाता है। यह दोनों गोले हवा में बिन्दु P पर टकराते हैं।
- (5)
- (i) गोलों के दागे जाने के बीच के अन्तराल (time-interval) का मान, तथा
- (ii) बिन्दु P के निर्देशांकी (coordinates) के मान ज्ञात कीजिए । निर्देश मूल-बिन्दुओं (origin of coordinates) को पहाड़ी के आधार (foot of the hill) पर तोपों के मुहाने के ठीक नीचे तथा गोलों के प्रक्षेप-पर्धी (trajectories) को x-y तल (plane) में मान लें ।
- 27°C पर एक आदर्श एवम् एकपरमाण्विक (monoatomic) गैस के दो मील (moles) आयतन V घेरते हैं । गैस कड्रोप्म-प्रक्रम (adiabatic process) से आयतन 2V तक प्रसरित होती है ।

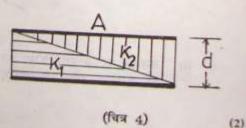

(5)

- (i) गैस के अन्तिम तापमान की ,
- (ii) गैस की आन्तरिक ऊर्जा में परिवर्तन की, तथा
- (III) इस प्रक्रिया में गैस द्वारा किए गये कार्य की गणना कीजिए ।
- 4. (a) एक जिरी (slit) के फ्रांनहॉफर विवर्तन-चित्र (diffraction pattern) के केन्द्रीय-महत्तम की कोणीय-चौड़ाई (angular-width) को मापा गया है । इसमें प्रयोग हुये प्रकाश की तरंग-दैध्यें का मान 6000Å है । जब जिरी को दूसरे तरंग-दैध्यें वाले प्रकाश से प्रदीप्त किया जाता है तो कोणीय-चौड़ाई 30% घट जाती है । इस प्रकाश की तरंग-दैध्यें की गणना कीजिए । जब समस्त मूल (original) उपकरण को एक द्रव में दुवाया जाता है तो कोणीय-चौड़ाई में उतना ही ह्वास होता है । इस द्रव का जपवर्तनांक जात कीजिए ।

(2)

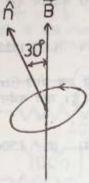

(b) बायु में रखे n अपवर्तनांक वाले एक समकोणीय प्रिज़्म $(45^\circ - 90^\circ - 45^\circ)$ के विकर्ण-तल पर $n_1(n_1 < n)$ अपवर्तनांक वाली एक पट्टिका चिपका दी गई है। एक प्रकाम-किरण तल AB (चित्र 2) पर आपतित है।

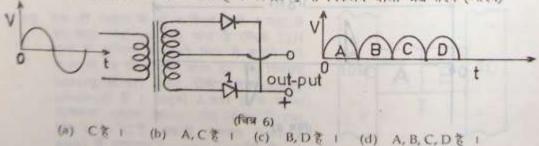
(3)

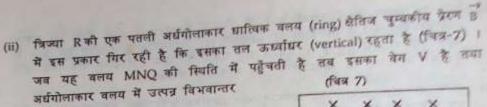

(i) तल AB पर आपतन-कोण का मान जात कीजिए जिससे कि किरण विकर्ण-तल पर क्रान्तिक कोण पर आपतित हो जाय।

- (ii) यदि n का मान 1.352 हो तो तल AB पर किरण के उस आपतन-कोण का मान ज्ञात कीजिए जिसके लिये अपवर्तित (refracted) किरण विकर्ण-तल से अविचलित बाहर निकल जाय ।
- 5. (a) 10 henry प्रेरकत्व (inductance) तथा 2 ohm प्रतिरोध वाली एक परिनलिका (solenoid) को एक 10 volt की बैटरी से जोड़ा गया है । कितने समय में चुम्यकीय-ऊर्जा का मान अधिकतम मान का एक चौबाई हो जाएगा ?
 - (b) हाइड्रोजन-जैसे एक परमाणु में एक इलेक्ट्रान किसी एक उत्तेजित अवस्या (excited state) में है, जिसमें सम्पूर्ण ऊर्जा (total energy) का मान -3.4 eV है। इलेक्ट्रान की (i) गतिज ऊर्जा तथा (ii) दे ब्रागली (de Broglie) तरंग-देध्य का मान ज्ञात कीजिये।
 - (c) किसी दिये हुए क्षण पर एक नमूने में 25 प्रतिशत अनाहियत (undecayed) रेडियो-धर्मी नाभिक (radio-active nuclei) हैं । 10 सैकिण्डों के बाद अनाहियत नाभिकों की संख्या 12.5 % रह जाती है । (i) नाभिकों की माध्य-आयु , एवम् (ii) उस अन्तराल की गणना कीजिए जिसमें कि अनाहियत नाभिकों की संख्या घटे हुए नाभिकों की संख्या का 6.25% रह जाती है ।
 - (d) एक द्वि-क्किरी (double-slit) उपकरण को 1.33 अपवर्तनांक वाले द्रव में हुवा दिया गया है । क्किरियों के बीच की दूरी 1.0 mm, तथा क्षिरियों के तल एवम् परदे (screen) के बीच की दूरी 1.33 m है । क्किरियों को एक समान्तर प्रकाश पुंज, जिसकी हवा में तरंग-देर्ध्य 6300 Å है, से प्रकाशित किया गया है ।
 - (i) फ्रिंज की चौड़ाई (fringe-width) ज्ञात कीजिए ।
 - (ii) अब दोनों में से एक बिरी को 1.53 अपवर्तनांक वाली कांच की पतली पट्टिका से ढक दिया गया है । परिणामतः निकटतम न्यूननिष्ठ-तीव्रता (adjacent minimum) अक्ष पर आ जाती है । पट्टिका की मोटाई ज्ञात कीजिए ।
 - (e) त्रिज्या R वाले एक छोटे गोले को 6R त्रिज्या वाले बड़े गोले के अन्दर वाले तल के साथ रोक कर रखा गया है (चित्र 3) । छोटे तथा बड़े गोलों के द्रव्यमान क्रमणः M तथा 4M है। इस विन्यास (arrangement) को एक कैतिज मेज पर रखा गया है । सभी सम्पर्क-तलों के बीच कोई घर्षण नहीं है । अब छोटे गोले को छोड़ दिया जाता है । बब छोटा गोला अपने पय की दूसरी चरम अवस्था में पहुँच जाता है, तब बड़े गोले के केन्द्र के निर्देशांक जात कीजिए।
- 6. (a) घारिता С वाले एक समान्तर पट्टिका संधारित्र की प्रत्येक पट्टिका का क्षेत्रफल A तथा इनके बीच की दूरी d है । पट्टिकाओं के बीच का स्थान चित्र-4 के अनुरुप दो बैजो (wedges), जिनके परावैद्युतांक क्रमण K1 तथा K2 है, से सरा है । परिणामी संधारित्र की घारिता ज्ञात का बित्र ।

(3)


(3)


- (b) धातु के R तथा 2R त्रिज्याओं वाले दो वियुक्त (isolated) ठीस गीले इस प्रकार आवित्रित किए गये हैं कि दोनों पर आवित्र घनत्व (σ) समान है। गीले एक दूसरे से बहुत दूरी पर रखे हुए हैं। अब वे एक पतली धात्विक तार द्वारा जोड़ दिये जाते है। बड़े गीले पर नये आवित्र-घनत्व का मान ज्ञात कीजिए।
- (3)
- (a) 24°C वाले 100 gm पानी का तापमान भाप मिलाकर 90°C तक बढ़ा दिया जाता है। इस प्रक्रिया में काम आने वाली भाप का द्रव्यमान जात कीजिए ।
- (2)
- (b) 440 Hz आवृत्ति की ध्विन निकालने वाली एक सीटी को 1.5 m लम्बे सुत्र (string) से बाध कर 20 rad s⁻¹ के कोणीय वेग से क्षेतिज तल में घुमाया जाता है। काफी दूर खड़े दर्शक द्वारा सुनी जाने वाली ध्विन की आवृत्ति परिसर (range of frequencies) जात कीजिए।
- (3)
- 8. एक इलेक्ट्रान, हाइड्रोजन परमाणु की निम्नतम ऊर्जा अवस्था में, R त्रिज्या वाली वृत्तीय कक्षा में वामवर्त दिशा में घूमता है (चित्र 5)।

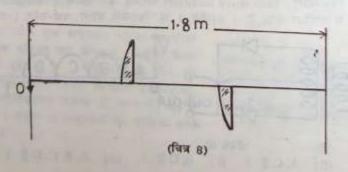


(খিন্ন 5)

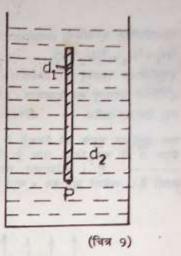
- (i) कक्षीय चुम्बकीय दिश्व आधूर्ण (orbital magnetic dipole moment) का व्यंजक ज्ञात कीजिए ।
- (ii) इस परमाणु को एकसमान चुम्बकीय प्रेरण $\stackrel{\rightarrow}{B}$ में इस प्रकार रखा जाता है कि इलैक्ट्रान-कक्षा का समतल अभिलम्ब चुम्बकीय प्रेरण की दिशा से 30° का कोण बनाता है । इलैक्ट्रान पर लगने वाला बल-आधूर्ण ज्ञात कीजिए ।
- 9. इस प्रश्न के प्रत्येक भाग में चार विकल्प दिए गये हैं जिनमें से एक विकलप सही है । सही विकल्प का चयन कीजिए तथा संबन्धित अक्षर a,b,c,d को अपनी उत्तरपुस्तिका में प्रश्न के उस नाग के क्रमांक के सामने लिखिये । आपके उत्तरों में प्रश्न के भागों का क्रम वहीं होना चाहिए जो प्रश्न पत्र में है । (5x2=10)
 - (i) एक पूर्ण-तरंग दिष्टकारी (full-wave rectifier) परिपय को इसके निर्गम (out-put) सहित चित्र ६ में दर्शाया गया है । डायोड 1 से निकलने वाली अर्ध-तरंग (-तरंगे)

(a) शून्य है ।

(b) $\frac{BV\pi R^2}{2}$ हे तथा M उच्चतर विभव पर है।

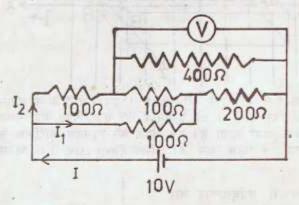

(c) BVπR है तथा Q उच्चतर विभव पर है।

(d) 2R BV है तया Q उच्चतर विभव पर है।

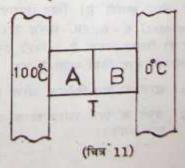

(iii) अगर पृथ्वी व सूर्य के बीच की दूरी वर्तमान दूरी की आधी होती तो एक वर्ष में दिनों की संख्या

- (a) 64.5 होती। (b) 129 होती। (c) 182.5 होती। (d) 730 होती।
- (iv) हुक के नियम का पालन करने वाली एक डोरी (string)का वर्धन (extension) x है। इस वर्धित डोरी में ध्वनि का वेग v है। यदि वर्धन बढ़ाकर 1.5x कर दिया जाय तो डोरी में ध्वनि का वेग
 - (a) 1.22v होगा। (b) 0.61v होगा। (c) 1.50v होगा। (d) 0.75v होगा।
- (v) एक खुली निलका का एक सिरा अचानक बन्द कर दिया गया है। परिणामतः बन्द निलका के त्रितीय हारमोनिक की आवृत्ति खुली निलका की मूल (fundamental) आवृत्ति से 100 Hz अधिक हो जाती है। खुली निलका की मूल आवृत्ति
 - (a) 200 Hz 青1 (b) 300 Hz 青1 (c) 240 Hz 青1 (d) 480 Hz 青1
- 10. f फोकस दूरी के एक पतले समतल-उत्तल (plano-convex) लैंस को दो बराबर भागों में विभक्त कर दिया गया है । दोनों में से एक को प्रकिशक अब के साथ-साथ खिसका दिया गया है (चित्र 8) । बिम्ब तथा प्रतिबिम्ब तलों के बीच की दूरी 1.8 m है। लैंस के एक अर्धभाग द्वारा बने प्रतिबिम्ब का आवर्धन (magnification) 2 है। लैंस की फोकस दूरी f तथा दोनों भागों के बीच की दूरी ज्ञात कीजिए । प्रतिबिम्ब रचना के लिए किरण आरेख (ray diagram) खींचिए ।

(5)

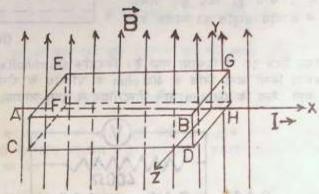

11. L सम्बाई तथा S अनुप्रस्य काट वाली एक पतली छड़ अपने निम्नतम बिन्दु P पर एक स्थिर, समाग (homogeneous) तथा श्यानताहीन (non-viscous) इब में कीलिकित (pivoted) है (चित्र 9) । छड़ P बिन्दु से गुज़रने वाली एक क्षैतिज अक्ष पर ऊर्घ्वाधर तल में भूमने के लिए स्वतंत्र है । छड़ के पदार्थ का धनत्व d₁ इब के धनत्व d₂ से कम है । छड़ को अपनी साम्यावस्था से एक छोटे कोण θ से विस्थापित करने के बाद छोड़ दिया जाता है । यह दर्शाएं कि छड़ की गति सरल आवर्त है । साथ ही दिये हुए प्राचलों (parameters) में कोणीय आवृत्ति का ब्यंजक ज्ञात कीजिए।

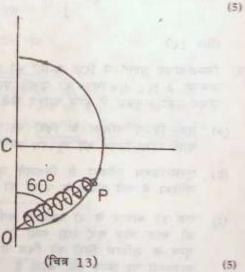
(5)


(5)

12. एक विद्युत परिपथ चित्र 10 में दिखाया गया है। किरचॉफ (Kirchhoff's) के नियमों का प्रयोग करके अथवा किसी अन्य विधि से 400 ohm के प्रतिरोध के दोनों सिरों के बीच विभवान्तर का मान, जैसा कि 400 ohm बाले बोल्टमीटर से मापा जायगा, जात कीजिए।

(चित्र 10)


- 13. निम्नलिखित प्रश्नों में रिक्त स्थानों की पूर्ति कीजिए । अपनी उत्तर पुस्तिका में उप-प्रश्न क्रमांक a, b, c, d, e लिख कर उसके प्रत्येक रिक्त स्थान के लिए उत्तर लिखिए । आपके उत्तर उसी अनुक्रम में होने चाहिए जैसे प्रश्न पत्र में हैं । (5 x 2 = 10
 - (a) एक्स-किरण निलका के सिरों पर 20kV का विभवान्तर लगा है । इससे निकलने वाली एक्स-किरण की न्यूनतम तरंगदैर्ध्य का मान ----- मै है ।
 - (b) एक्स-किरण नलिका से निकलने वाली K_{α} एक्स-किरणों की तरंग-दैर्घ्य 0.76 Å है। नलिका में लगे एनोड के पदार्थ की परमाणु संख्या ----- है।
 - (c) एक ही आकार के दो घात्विक घनों A तथा B को साथ जोड़ कर रखा गया है (चित्र 11)। युग्म के अन्तिम सिरों को चित्र में दर्शाये गये तापमानों पर स्थिर रखा जाता है। यह विन्यास (arrangement) उद्मा रोधित (thermally insulated) है। घातुओं A तथा B के ऊष्मा चालकता गुणांक क्रमणः 300 W/m°C तथा 200 W/m°C है। स्थायी अवस्था (steady state) में तापमान T ------°C है।


- (d) निम्नलिखित अभिक्रिया (reaction) पर ध्यान दीजिए । $^2H_1 + ^2H_1 = ^4He_2 + Q$ इय्द्रीरियम परमाणु का द्रव्यमान = 2.0141 u

 हीलियम परमाणु का द्रव्यमान = 4.0024 u

 यह एक नाभिकीय ----- अभिक्रिया है । इसमें उत्सर्जित ऊर्जा Q का मान ------ MeV है ।
- (e) एक धात्विक गुटके को जिसमें से विद्युत धारा | प्रवाहित हो रही है, एक समीगी चुन्वकीय प्रेरण B में रख दिया गया है (चित्र 12) । गतिमान आवेशों पर लगने वाला वल है ------ है । परिणामतः गुटके के तल (face) ------ के विभव में कभी आ जाती है। आवेशों का वेग v मान लें । (चित्र 12)

- 14. दो नक्षत्रों (stars) के केन्द्रों के बीच की दूरी 10a है । इन नक्षत्रों के द्रव्यमान M तया 16M एवम् त्रिज्याएं क्रमणः a तथा 2a हैं । m द्रव्यमान का एक पिण्ड बड़े नक्षत्र की सतह से सीधा छोटे नक्षत्र की ओर दागा जाता है। इस पिण्ड की न्यूनतम आरंभिक चाल, जिससे कि यह छोटे नक्षत्र की सतह तक पहुँच जाय, का व्यंजक (expression) G, M तथा a को प्रयुक्त करके ज्ञात करें।
- 15. R जिज्या वाली एक चिकनी अर्धवृत्ताकार तार की लीक (wire-track) कर्घ्वांधर तल में स्थिर कर दी गई है (चित्र 13) । 3R/4 स्वाभाविक लम्बाई वाले द्रव्यमान रहित (massless) स्प्रिंग का एक सिरा तार की लीक के निम्नतम बिन्दु O से जोड़ दिया गया है। m द्रव्यमान वाले एक छोटे से छल्ले को स्प्रिंग के दूसरे सिरे पर जोड़ दिया गया है। छल्ले को बिन्दु P पर इस प्रकार स्थिर रला गया है कि स्प्रिंग ऊध्वार्धर से 60° का कोण बनाती है। स्प्रिंग-स्थिरांक (spring constant) K = mg/R. छल्ला तार की लीक पर ही खिसक सकता है। किसी क्षण पर, जब छल्ले को मुक्त किया जाता है तब

- (i) छल्ते का बल-निर्देशक ओरेल (free body diagram) बनाइये ।
- (ii) छल्ते के स्पर्ग रेखीय त्वरण तथा अभिलम्ब प्रतिक्रिया (normal reaction) के मान