CH		रसायन शास्त्र 1995
समय : दो प	<i>></i>	पूर्णांक : 60
		रहन है। प्रत्येक प्रश्न का उत्तर नए पृष्ठ से आरम्भ करना
(2)	सभी प्रश्नों का उत्तर दं	াজিছ।
(3)	उत्तर केवल उसी भाष	ा में देना है जिसका उल्लेख प्रवेश पत्र में है।
		rabic numerals) (0, 1, 2, 9) के प्रयोग की र की चयनित भाषा कोई भी हो।
	दाहिनी कोर पर ब्रेकेट रं है।	में लिखित अंकक संबंधित प्रश्न के लिए अंक सूचित करते
(6)	एक प्रश्न के सभी उपप्र	हनों का उत्तर एक जगह दीजिए।
0.3	तचुगणकीय सारणी (LO	garithmic Tables) के प्रयोग की अनुमति है।
(8) 3	लाइड कल अथवा परि	कलक (Calculator) के प्रयोग की अनुमति नहीं है।
ত্য ব	प्ययोगी औकड़े / उपवं	ोगी भौतिक स्थिरांक :
	मनोगाद्रो स्थिराक	$= 6.023 \times 10^{23} \text{ mol}^{-1}$
	स नियतांक	R = 1.987 cal K ⁻¹ mol ⁻¹
		$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
		= 0.082 litre atm K $^{-1}$ mol $^{-1}$
	फैराडे	F = 96500 coulombs mol ⁻¹
4	लैंक नियतांक	h = 6.626 × 10 ⁻³⁴ J sec
3	ल्ताजा का वेग	$c = 3 \times 10^8$ metres sec ⁻¹
	स्टलाणू, संहति	H=10, C=120, He=40,
		N = 140, O = 160, CI = 35.5,
		S = 32.0. Cr = 52.0. 1 = 127.0

- (a) नाभिकीय विस्फोट का एक दुष्परिणाम ⁹⁰Sr का उत्पादन और इसका हड्रियों में समावेशन है। इस न्यूक्लाइड (nuclide) की अर्थ-आयु (holf-life) 28-1 वर्थ है। यह मानते हुए कि एक नवजात शिशु (new-born child) में इसका 1 माइक्रोग्राम का समावेश हुआ है, तो 20 वर्ष पक्षात् उसकी हड्डियों में कितना ⁹⁰Sr शेष रहेगा ? (2)
 - (b) एचेन (C_2H_2) और एथीन (C_2H_4) के एक मिश्रण का 1 atm और 400 K पर आयतन 40 लीटर है। यह मिश्रण 130 g ऑक्सीजन से पूर्णतया अभिक्रिया करके CO_2 और H_2O बनाता है। गैस के लिए आदर्श व्यवहार (ideal gas behaviour) मानकर मिश्रण में C_2H_4 और C_2H_6 के मोल फ्रैक्शन (mole fraction) का परिकलन कोजिए। (4)
- 2. (c) आयोडीन अणु 4500 Å का प्रकाश अवशोषण करके परमाणुओं में वियोजित होता है। यदि विकिरण (radiation) का एक क्वांटम प्रत्येक अणु अवशोषित करता है, तो आयोडीन परमाणुओं की गतिज ऊर्जा (kinetic energy) का परिकलन कीजिए। (1, की आबंध ऊर्जा = 240 kJ mol⁻¹)
 - (b) Fe^{3+} के 1.0×10^{-3} M अम्लीय घोल में द्रवीय पारे का आधिक्य (excess) डाला जाता है। जब 25° C तापमान पर संतुलन होता है तब Fe^{3+} की मात्रा 5% पायी जाती है। यह मानकर कि केवल $2Hg + 2Fe^{3+} \rightarrow Hg_2^{-2+} + 2Fe^{2+}$ अभिक्रिया ही होती है, $E^0_{(Hq^{2+}/Hq)}$ के मान का परिकलन कीजिए।

(जबकि
$$E^0_{(Fo^{3+}/Fo^{2+})} = 0.77 \vee$$
है) (4)

 (c) यदि अमोनियम फॉर्मेंट के एक 10 M जलोग घोल का संपूर्ण वियोजन (complete dissociation) होता है, तो इस घोल के pH के मान का परिकलन कीजिए।

(फार्मिक अम्ल का pK = 3.8 तथा अमोनिया का pK = 4.8 है।)

(b) हाइड्रोजन परऑक्साइड (H₂O₂) के 380° C पर प्रथम कोटि के अपघटन (first order decomposition) की अर्ध-आयु (half-life period) 360 मिनट है और इस अभिक्रिया की सक्रियण ऊर्जा (energy of activation) 200 kJ mol⁻¹ है। 450°C पर 75% अपघटन के लिए जो समय लगेगा उसके मान का परिकलन कीजिए। (4)

4. (a) Cl₂ == 2Cl के साम्य मित्रण (जो कि 1200°C पर होता है) के संयोजन (composition) को सूची-छिंद्र (pinhole) से हुए नि:सरण की दर (rate of effusion) का माप निकालकर प्राप्त किया जाता है। 1.80 mm Hg के दबाव पर यह देखा जाता है कि यह मिश्रण क्रिप्टॉन की तुलना में 1.16 गुना तेज नि:सरित होता है। जितने क्लोरीन अणुओं का परमाणुओं में वियोजन (dissociation) हुआ है उस क्रैज्झान का परिकलन कीजिए। (Kr का परमाण भार = 84)

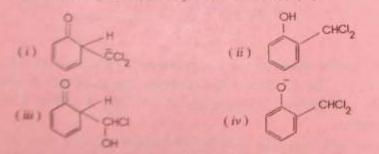
(2)

(b) निम्नलिखित यौगिकों के IUPAC पदाति में नाम लिखें :

(8 [CO(NH3)30NO]C12 (8) K4[Cr (CN52]

(2)

(4)


(2)

(2)

निम्नलिखित के कारण बताइए : (अपने उत्तर केवल चार या पाँच वाक्यों में दीजिए।) 5. (a) NF, में प्रायोगिक रोति (experimentally) से निकाली हुई N-F आवंध की लंबाई (bond length). N और F के एक-आवंध सहसंयोजक त्रिज्याओं (single bond (2) covalent radil) के योग से अधिक है। (b) Mg,N, की पानी से अभिक्रिया होने पर NH, गैस निकलती है परन्तु MgCl, की पानी से, कमरे के तापमान पर, अभिक्रिया से HCi नहीं निकलती। (2) (c) (CH_) N को तुलना में (SH_) N एक सीण सारक (weaker base) है। (2) (a) H_O, के 50 cm³ मोल की KI के अम्लीय मोल (acidified solution) के साथ अभिक्रिया करने पर 0.508 g आयोडीन निकलती है। SIP पर H₂O₂ के घोल की प्रबलता (strength) का परिकलन उसके आयतन प्रबलता के पद में (in terms of (3) volume strength) कोजिए। (b) बेजॉयल परआविमाइड (benzoyi peroxide) को उपस्थिति में 1, 4-पेंटाडाइन (1, 4-pentaciene) की HCI के आधिक्य (excess) के साथ अभिक्रिया करने पर बीगिक X बनता है। X की ड्राई ईथर (dry ether) में Mg के आधिक्य के साथ अभिक्रिया करने से यौगिक 'Y' बनता है। यौगिक 'Y' का एथिल ऐसीटेट (ethyl acetate) और उसके पश्चात् तनु अम्ल (dilute acid) से अभिक्रियित (treat) करने पर यौगिक 'Z' प्राप्त होता है। गौगिकों 'X', 'Y' और 'Z' की संरचनाओं (structures)

7. (a) जब झोनॉल (Phenoi) का CHCl, और NaOH के साथ अभिक्रिया करने के पशात् अन्लोकरण (acidification) किया जाता है तब सैलिसिलऐल्डिहाइड (solicylaldehyde) प्राप्त होता है। इस अभिक्रिया में निम्नलिखित स्पीशीज़ (species) में से कौन से माध्यमिक (intermediates) के रूप में भाग लेते है ? (2)

को पडचानिए।

- (b) CO. CH, और He के एक 200 cm³ मिश्रण का ऑक्सीजन के आधिक्य में कमरे के आपमन पर विद्युत विसर्जन (electric discharge) द्वारा विस्फोटन (explosion) करने पर इसके आयतन में 13 0 cm³ का संकुचन (contraction) पाया जाता है। ग्रेण बची गैस को KOH के घोल के साथ अधिक्रियित (treat) करने पर 14.0 cm³ का और संकुचन पाया जाता है। आयतन प्रतिशत के पद में (in terms of volume percentage) गैस के मिश्राग का संयोजन (composition) निकालिए।
 - (4)

(3)

8. (c) एक सिट्टी लाल (scorie) red) रंग के यौगिक 'A' को सान्द्र HNO₃ के साथ अधिक्रियत (treat) करने पर एक बॉकलेटी घूरे रंग का अवश्रेप 'B' प्राप्त होता है। इस अवश्रेप को छनने के बाद प्राप्त निस्यद (filtrate) को NaOH के साथ उदासीन (neutrose) किया जाता है। तत्पत्वात् इस घोल में KI डालने पर एक पीला अवश्रेप 'C' मिलला है। अवश्रेप 'B' को Mri(NO₃), की उपस्थिति में सान्द्र HNO₃ के साथ

(4)

(2)

गरम करने पर पौषिक 'D' के बनने के कारण घोल का रेग गुलाबी हो जाता है। A 8 C तथा D को पहचान कोजिए और उपर बतायी हुई अधिक्रियाओं को लिखिए। 8 C तथा D को पहचान कोजिए और उपर बतायी हुई अधिक्रियाओं को लिखिए। (का सिम्नलिखित काबीबिसलिक अपनों में से किसका सबसे आसानी से काबोक्सिलहरण (decarboxylation) होता है ? संक्षेप में इसका कारण बताइए। (decarboxylation) होता है ? संक्षेप में इसका कारण बताइए। ($0 \ C_0H_5-CO-COH$ ($0 \ C_0H_5-CH-COOH$ ($M \ C_0H_5-CH-COOH$ NH₂

 (a) उन विविम समावयवियों (stereoisomers) की संरचनाओं (structures) को लिखिए जो cis-2-ब्यूटीन और ब्रोमीन की अधिक्रिया से बनते हैं।
 (2)

(b) निम्नानिखित अभिक्रियाओं के अनुक्रम (sequence) को उचित संरचनाओं से पूर्ण कोजिए।

175	сн,сн,соон	P और बोमोन	Α		
10	1. ऐल्कोहॉसी XOH (3		В		(2)
	A 2. H*	1. NaNO2 और HCI 5°C पर	с		(1)
(0)	2. 4-हाइनाइट्रोऐनिलोन	ट्राण्नलान 2. ऐनिसील (anisole)			10 2
112	С.нСНО+СН	NOOC2H5 परिशुन	а С ₂ н ₅ ОН й	D	
010	Cana-Cho + Cha-	वया गरम कर	ने पर		(1)

- 10. (a) एक कार्वनिक यौगिक E (C₅H₈) हाइड्रोजनीकरण (hydrogenation) के बाद यौगिक F (C₅H₁₂) देता है। यौगिक E का ओजोनीकरण (ozonolysis) करने पर फॉर्मेल्डीहाइड और 2-कींटोजोपेनैल (2-ketopropanal) प्राप्त होता है। यौगिक E की संरचना निकालिए।
 - (b) मुलग मूर्गक (optically active) 2-आयोडोब्यूटेन (2-lodobutane) की ऐसीटोन (acetone) में Nal के साथ अभिक्रिया करने पर जो उत्पाद बनता है वह धुवण मूर्णकेंगा (optical activity) तहीं दिखाता। संक्षेप में कारण बताइए। (2)

G +HOOC-CAHA-CH2-CAHA SOCI Findentine AlCol₃ H 2/2-Hg ------14

-	गणित	
	MA 1995	
1		
	समय : दो घंटे	50
	सूचना: (1) इस प्रश्न पत्र में 12 प्रश्न हैं। प्रत्येक प्रश्न का उत्तर नये पृष्ठ से शुरू करें।	
	(2) सभी प्रश्न करने हैं।	
	(3) उत्तर केवल उसी भाषा में लिखें जो आपके प्रवेश पत्र में दी गयी है।	
	(4) प्रश्नों के उत्तर में केवल अरबी (Arabic) अंकों (0, 1, 2,	ही
	(5) प्रश्नों के अंक दाहिने हाशिये के कोछों में दिये गये हैं।	
	(6) परिकलक (Calculator), परिकलन पट्टिका (Slide Rule), लघुगण (Logarithmic), त्रिकोणमितीय (Trigonometric) तथा सांख्यिकीय (Statisti सारणियों व आफ पेपर का प्रयोग बर्जित है।	कोय ca)
	1. यदि $iZ^3 + Z^2 - Z + i = 0$, तो दिखायें कि $ Z = 1$.	(5)
	2. यदि $ Z \le 1$, $ W \le 1$, तो दिखायें कि	
	$ Z - W ^2 \le (Z - W)^2 + (\operatorname{Arg} Z - \operatorname{Arg} W)^2.$	(5)
	3. माना कि a b, c वास्तविक (real) हैं। यदि $ax^2 + bx + c = 0$ के मूल (roots) α और β दोनों वास्तविक हैं, जहाँ $\alpha < -1$ और $\beta > 1$, तो दिखायें कि	
	$1 + \frac{c}{a} + \left \frac{b}{a} \right < 0.$	(5)
	4. वह सबसे छोटी धनात्मक संख्या p ज्ञात करें जिसके लिए	
	$\cos(p \sin x) = \sin(p \cos x)$ का हल $x \in [0, 2\pi]$ है।	(=)
	का हल $x \in [0, 2\pi]$ है। 5. माना कि $I_m = \int_0^{\pi} \frac{1 - \cos mx}{1 - \cos x} dx$	(5)
	गणितीय आगमन (mathematical induction) से सिद्ध करें कि $I_m = m \pi$, $m = 0, 1, 2, \dots$	
		(5)
	(1)	

- यह सिद्ध करें कि परवलय (parabola) y² = 4x की 2 प्रवणता (slope) वाली जीवा (chord) को 1 : 2 अनुपात में अन्तर्विभाजित (internal division) करने वाले बिन्दु का बिन्दुपथ (locus) एक परवलय होगा। इस परवलय का शीर्षबिन्दु (vertex) ज्ञात करें।
- 7. माना कि c' दीर्षवृत्त (ellipse) $\frac{x^2}{\sigma^2} + \frac{y^2}{b^2} = 1$ के केन्द्र से उसके किसी बिन्दु P की स्पर्श रेखा (tangent) पर डाले गये लम्ब को लम्बाई है। यदि F_1 और F_2 दीर्षवृत्त के नाभिकेन्द्र (foci) हो, तो सिद्ध करें कि

$$PF_1 - PF_2$$
)² = 4a² $\left(1 - \frac{b^2}{a^2}\right)$.

- 8. माना कि सभी वास्तविक संख्याओं x और y के लिए $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$ है। यदि f'(0) का अस्तित्व है (exists) और वह -1 के बराबर है तथा f(0) = 1, तो f(2)का मान ज्ञात करें। (5)
- 9. माना कि (h, k), h > 0, k > 0 एक स्थिर बिन्दु है। इस बिन्दु से जाती हुई एक रेखा निर्देशक अखों (coordinate axes) को धनात्मक दिशाओं में P और Q बिन्दुओं पर काटती है। त्रिभुज OPQ, जहाँ O मूलबिन्दु (origin) है, के क्षेत्रफल का न्यूनतम (minimum) मान ज्ञात करें।
- 10. निश्चित समाकल (definite integral)

$$\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \left(\frac{x^{4}}{1-x^{4}}\right) \cos^{-1}\left(\frac{2x}{1+x^{2}}\right) dx$$

का मान निकाल।

- एक वर्ग के शीर्षबिन्दु (1, 1), (-1, 1), (-1, -1) व (1, -1) है। वर्ग के अन्दर S वह क्षेत्र है जिसके सभी बिन्दु वर्ग की किसी भी भुजा की अपेक्षा केन्द्र (origin) के अधिक निकट है। क्षेत्र S को चित्रित (sketch) करें और उसका क्षेत्रफल निकालें। (5)
- 12. माना कि वक्र y=f(x) बिन्दु(1,1) से जाता है तथा वक्र के किसी भी बिन्दु की स्पर्श-रेखा व निर्देशक अक्षों के द्वारा बना त्रिभुज प्रथम क्वाईन्ट (quadrant) में स्थित है और उसका क्षेत्रफल 2 है। ऐसे बक्रों के लिए अबकल समीकरण (differential equation) बनावें और ऐसे सभी वक्रों को जात करें।

(5)

(5)

(5)

PH	भौति	
	199	5 पुणांकि : 60
समय : दो		
सूचनाः (।) इस प्रश्न पत्र में 6 प्रश्न हैं। प्रत्येक	प्रश्न का उत्तर नये पृष्ठ पर प्रारम्भ कीजिए।
(2)	सभी प्रश्न हल कीजिए।	
(3)	उत्तर केवल आपके प्रवेश पत्र (A हुई भाषा में लिखे जाने चाहिए।	Admit Card) में प्रदर्शित, आपके द्वारा चुनी
(4)	उत्तर लिखते समय केवल अरबी अनुमति है। उत्तर के लिए आपकी	अंकों (0, 1, 2, 9) के प्रयोग की चयनित भाषा कोई भी हो।
(5)	दायीं ओर किनारे पर कोष्ठकों में f हैं।	देये गये अंक संबंधित प्रश्नों के पूर्णांक दर्शाति
(6)	प्रत्येक प्रश्न के सभी भागों के उत्तर	एक स्थान पर दीजिए।
(7)	लघुगणकीय सारणी (लॉग टेबल) व	ज प्रयोग कर सकते हैं।
(8)	परिकलक (कैलकुलेटर) और स्लाइड	इ रूल का प्रयोग वर्जित है।
(9)	उपयोगी औंकड़े :	
	निर्वात में प्रकाश की गति	$c = 3.0 \times 10^8 \text{ m s}^{-1}$
	प्लैंक नियतांक	$h = 6.63 \times 10^{-34} Js$
	इलेक्ट्रॉन का द्रव्यमान	$m_{e} = 9.1 \times 10^{-31} \text{ kg}$
	इलेक्ट्रॉन का आवेश	$e = 1.6 \times 10^{-10} C$
	सार्वत्रिक गैस नियतांक	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
	गुरुत्वीय त्वरण	g = 9.8 m s ⁻²
	4π×(विद्युतशीलता नियतांक)	$4\pi\epsilon_{0} = 1.11 \times 10^{-10} \text{ C}^{2} \text{ N}^{-1} \text{m}^{-2}$

- एक विशाल व एकसमान अनुप्रस्थ-काट क्षेत्रफल A की टेकी क्षीतज सतह पर स्थित है। इसमें दो अमिश्रणीय, अश्यान एवं असंपीड्य द्रव भरे है, जिनके चनत्व ८ एवं 20 है, एवं प्रत्येक की ऊँचाई H/2 है, जैसा चित्र 1 में दर्शाया गया है। कम चनत्व वाले द्रव के ऊपरी पृष्ठ पर वायुमण्डल है जिसका दाब P₀ है।
 - (a) एक समांग बेलनाकार गुटके को, जिसकी लम्बाई L(L<H/2) एवं अनुप्रस्य काट
 (c) एक समांग बेलनाकार गुटके को, जिसकी लम्बाई L(L<H/2) एवं अनुप्रस्य काट क्षेत्रफल A/5 है, इस प्रकार हुबाया जाता है कि जिससे यह गुटका अपने ऊष्ट्र्यांघर अक्ष पर दोनों द्रवों के अंतरापृष्ठ में ऐसे तैरे जिससे कि गुटके की L/4 लम्बाई चने द्रव में डूबी रहे।

(1) गुटके का घनत्व D कितना होगा ?
 (1) टंकी की निचली सतह पर पूर्ण दाब कितना होगा ?

(b) बेलन को टंकी से निकाला जाता है तथा द्रवों को मूल स्थिति पुन: प्राप्त हो जाती है। अब टंकी के ऊर्घ्व किनारे में ऊँचाई h(h<H/2) पर एक सूक्ष्म छिद्र किया जाता है जिसका क्षेत्रफल s(s<< A) है। () छिंद्र से बहते हुए द्रव का आरम्भिक बहि:स्राव वेग क्या होगा ?

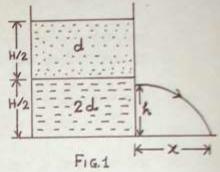


FIG. 2

- (ii) द्रव की आरम्भिक क्षैतिज दूरी x कितनी होगी ?
- (iii) छिंद्र की ऊँचाई h, कितनी होनी चाहिए ताकि द्रव की धार की आरम्भिक क्षैतिज दूरी x, अधिकतम हो ? x, का भी परिकलन कीजिए।

(परिकलन में वायु-प्रतिरोध (air resistance) नगण्य मानिए।)

(10)

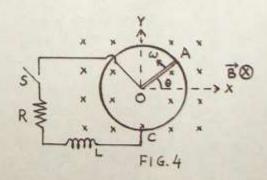
(10)

- 2. एक आयताकार व नियत दृढ़ गुटके के लम्बे क्षैतिज किनारे पर एक टोस समांग बेलन. जिसको त्रिज्या R है, स्थिर अवस्था में क्षैतिज रूप से रखा गया है। बेलन का अध किनारे से समान्तर है तथा इसका अक्ष व गुटके का किनारा एक ही ऊर्घ्वाधर तल में स्थित है, जैसा चित्र 2 में दर्शाया गया है। इसके किनारे पर पर्याप्त घर्षण है जिससे बेलन थोड़ा विस्थापित करने पर बिना फिसलन के किनारे से लुढ़क सकता है। निर्धारित करें :
 - (a) बेलन के घूर्णन का कोण θ_c, जब यह गुटके के किनारे को स्पर्श करना छोड़े।
 - (b) किनारे से स्पर्श छोड़ते समय बेलन के संहति-केन्द्र की गति।
 - (c) जब संहति-केन्द्र किनारे से जाने वाली क्षैतिज रेखा में हो, तो उस समय की जगगग स्थानानरीय व घूर्णन गतिज ऊर्जाओं में अनुपात।
- 3. एक गैसीय मिश्रण एक पात्र में बन्द है, जिसका आयतन V है। यह गैसीय मिश्रण एक ग्राम मोल (gram mole) की गैस A, जिसका Y(= C_p / C_y) = 5/3 है एवं एक दूसरी गैस B जिसका Y = 7/5 है, से बना हुआ है। मिश्रण का स्थिर तापमान T है। गैस A एवं B के ग्राम मॉलीक्यूलर वेट (gram molecular weight) क्रमश: 4 तथा 32 है। गैस A व B के बीच में गसायनिक अभिक्रिया नहीं होती है तथा इन्हें आदर्श गैस मानिए। यह गैसीय मिश्रण रुद्धोष्म प्रक्रम (adiabatic process) में निम्नलिखित समीकरण का अनुसरण करता है :

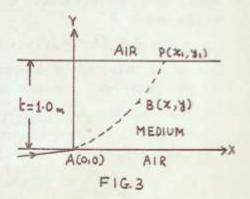
- (c) गैसीय मिन्नण में गैस B के ग्राम मोल की संख्या ज्ञात कीजिए।
- (b) गैसीय मिश्रण में I = 300 K तापमान पर ध्वनि की गति संगणित कीजिए।
- (c) यदि 7 को 300 K से 1 K अधिक बढ़ाया जाए, तब गैसीय मिश्रण में च्वनि की गति में प्रतिशत बदलाव (percentage change) ज्ञात कीजिए।
- (d) यदि मिल्लण को रुद्धोव्यी प्रक्रम (adiabatic process) से आरंपिक आयतन / के 15 भाग तक संपीडित किया जाता है, तो रुद्धोण्मी संपीड्यता में अन्तर (chonge in odiabatic compressibility) को दी हुई राशियों के निवन्धन में जात कीजिए। (10)
- वायु से गुज़रती हुई एक प्रकाश किरण पृष्ठसपीं कोण (आपतन कोण = 90°) बनाती हुई 4. एक लम्बे आयताकार पट्ट-धारित पारदर्शी माध्यम पर आपतित है, जिसकी मोटाई t=10m है (चित्र 3 देखिए)। आपतन बिन्दु A के निर्देशांक (0, 0) हैं। माध्यम का चर अपवर्तनांक n (y) इस प्रकार है :

$$p(y) = (ky^{3/2} + 1)^{1/2}$$

वायु का अपवर्तनांक 1.0 है तथा $k = 1 \text{ (metre)}^{-3/2} \hat{g}_1$


- (d) माध्यम में किरण प्रपथ के एक बिन्दु B (X, Y) पर प्रपथ की प्रवणता तथा उसी बिन्दु पर कोण में सम्बन्ध आपतन
- (b) माध्यम में किरण प्रपथ समीकरण y (x) प्राप्त कीजिए।

निकालिए।


- (c) किरण वायु-पट्ट सीमांत के ऊपरी पृष्ठ को बिन्दु P पर प्रतिच्छेदित करती है। इस बिन्दु P के निर्देशांक (x, y,) को निर्धारित कीजिए।
- (d) तदनन्तर किरण के पथ को ज्ञात कीजिए।

5. धातु की एक छड़ OA को, जिसका द्रव्यमान m व लम्बाई r है, एक स्थिर कोणीय वेग @ से बिन्दु 🔿 में से गुजरते क्षैतिज अक्ष के चारों ओर ऊर्ध्व तल में घुमाया जा रहा है। इसका

मुक्त छोर A उसी तल में स्थित एक स्थिर, सुचालक, वृत्ताकार वलय के साथ-साथ बिना घर्षण के घुमाया जा रहा है जो घूर्णन का तल है। घूर्णन के तल के लम्बवत् व तल के भीतरी ओर एकसमान व स्थिर चुम्बकत्व प्रेरण 🖥 अनुप्रयुक्त किया जाता है, जैसा चित्र 4 में दर्शाया गया है। एक प्रेरक L व एक बाह्य प्रतिरोधक R को वलय पर बिन्दु

(3)

(10)

ि तथा C के बीच में स्विच S द्वारा जोड़कर एक वैद्युत परिपथ बनाया जाता है, जैसा चित्र में दिखाया गया है। वलय व छड़ के प्रतिरोध को नगण्य मानिए। आरम्भ में स्विच खुला है।

- (a) स्विच के अन्तिम छोरों के बीच में कितना प्रेरक विद्युत् वाहक बल (E.M.F.) है ?
- (b) समय t = 0 पर स्विच बंद किया जाता है, तो
 - (/) विद्युत्-धारा व समय के संबंध का व्यंजक निकालिए।
 - (ii) साम्य अवस्था में बलाधूर्ण की समय पर निर्भरता निकालिए जो एक स्थिर कोणीय बेग कायम रख सके। यह दिया गया है कि छड़ OA समय t = 0 पर धनात्मक X-अक्ष पर थी।
- 5. एक प्रकाश-वैद्युत उत्सर्जन प्रेवस्थन (set-up) में 3.2 × 10⁻³ W का एक बिन्दु स्रोत है जो 5.0 eV ऊर्जा के समोर्जी फोटॉन्स (Photons) उत्सर्जित करता है। यह स्रोत धातु के एक स्थिर गोले के केन्द्र से 0.8 m की दूरी पर स्थित है जिसका कार्य फलन 3.0 eV है एवं जिसकी त्रिज्या 8.0 × 10⁻³ m है। प्रकाश-वैद्युत उत्सर्जन की दक्षता इतनी है कि 10⁶ आपतित फोटॉन्स से एक फोटो-इलेक्ट्रॉन उत्पन्न होता है। गोले को वियुक्त व आदित: अनाविष्ट मानिए। यदि फोटो-इलेक्ट्रॉन्स को उत्सर्जन के तत्काल पश्चात् इस सेट-अप से दूर कर दिया जाता है, तो
 - (a) उत्सर्जित फोटो-इलेक्ट्रॉन्स की संख्या प्रति सेकण्ड परिकलित कीजिए।
 - (b) आपतित प्रकाश की तरंगदैर्घ्य एवं अधिकतम गति से उत्सर्जित होने वाले फोटो-इलेक्ट्रॉन की de Broglie तरंगदैर्घ्य के बीच के अनुपात को ज्ञात कीजिए।
 - (c) प्रकाश स्रोत को प्रज्वलित करने के t सेकण्ड पश्चात् फोटो-इलेक्ट्रॉनों का उत्सर्जन समाप्त हो जाता है। ऐसा क्यों होता है ?
 - (d) समय t का मान निकालिए।

(10)